将通过区域选择性气相渗透 (VPI) 将三甲基铝渗透到聚(2-乙烯基吡啶)中制备的 5 纳米氧化铝薄膜的生长化学和电性能与传统的等离子体增强原子层沉积 (PEALD) 工艺进行了比较。通过能量色散 X 射线光谱和硬 X 射线光电子能谱测量评估了化学性质,同时进行了电流 - 电压电介质击穿和电容 - 电压分析,首次提供了这些薄膜的电信息。评估了通过聚合物 VPI 形成电介质的成功和挑战、吡啶在这种角色中的兼容性以及独特快速的接枝聚合物刷方法在形成相干金属氧化物方面的能力。结果发现,在 200 到 250 ◦ C 之间的温度下制备的 VPI 氧化铝具有一致的击穿电场,性能最佳的器件的 к 值为 5.9。结果表明,VPI 方法可以生成具有与传统 PEALD 生长薄膜相当的介电性能的氧化铝薄膜。
本报告涵盖了 WPI0 内的活动,该活动的目的是审查现代陶瓷材料的电气强度测试。描述了开展这项工作的背景以及所采用的实验方法。使用氧化铝基板产品和两种 PZT 压电材料,研究了与样品的几何形状和生产方法相关的各种因素。使用众所周知的威布尔分布对击穿数据进行统计评估,以确定该方法对电气强度的可用性。得出了以下结论。.厚度在 1.0 到 0.25 毫米之间且电气强度超过 100 kV/mm 的薄平面试件可以在变压器油中测试时进行电极化和测试,而不会出现边缘跟踪或闪络问题;.可以使用足够的试件系统地解决电气强度的差异,并且已经获得的示例表明电极面积效应、厚度效应和加工/退火效应;.无需对试件进行压痕以防止边缘闪络;在薄试件上产生小凹痕并非易事,需要专门的精密设备; .从名义上相同的样品的测试结果发现,其电气强度存在差异,可以用双参数威布尔分布来表示; .薄蒸发电极的质量必须使得击穿位置
摘要 本文对氨-氧-氮-水混合物中的流光进行了自洽一维建模。开发并验证了一种包含物质输运、静电势和详细化学性质的流体模型。然后使用该模型模拟由纳秒电压脉冲驱动、在不同热化学条件下由一维层流预混氨-空气火焰产生的雪崩、流光形成和传播阶段。成功证实了 Meek 标准在预测流光起始位置方面的适用性。由于电离率不同,流光形成和传播持续时间随热化学条件的不同而存在显著差异。热化学状态还影响击穿特性,通过保持背景减小电场恒定来测试击穿特性。详细的动力学分析揭示了 O(1 D)在关键自由基(如 O、OH 和 NH 2 )生成中的重要性。此外,还报道了 NH 3 的解离电子激发对 H 和 NH 2 自由基产生的贡献。不同热化学状态下各种非弹性碰撞过程的电子能量损失分数的空间和时间演变揭示了燃料解离所消耗的输入等离子体能量以及雪崩和流光传播阶段主要过程的巨大变化。本研究报告的方法和分析对于开发用于氨点火和火焰稳定的受控纳秒脉冲非平衡等离子体源的有效策略至关重要。
• 每个设备都有需要理解和设计的故障机制 • 高电场导致时间相关击穿 (TDB) • 高电场和热载流子导致电荷捕获 • 切换会导致反向恢复、高压摆率和热载流子磨损带来的应力 • 已知的 GaN 故障模式是切换时间尺度上的 Rds-on 增加。这种动态 Rds-on 增加是由于电荷捕获造成的。 • 可靠性工程包括使 FET 能够可靠地承受应用中的应力
表4下面显示了整个NEM的十个表现最差的单个生成单元(按崩溃数量)的崩溃数量。昆士兰州的Kogan Creek Power Station的单个单元是NEM中表现最差的单元(按击穿数量)。昆士兰州的三个煤炭单位位居NEM中最差的十大表现。只有一个新南威尔士州的煤炭单位是NEM表现最差的单位之一,偶然地与其他Liddell单位一起计划在2023年退休。
摘要:在过去的几年中,在多次光束测试活动中观察到,当在比实验室测试期间安全操作电压低得多的电压下操作时,辐照的 LGAD 传感器会断裂,并留下典型的星形烧痕。本文提出的研究旨在确定这些传感器可以承受的安全工作电压。作为 ATLAS 高粒度定时探测器 (HGTD) 光束测试的一部分,来自不同制造商的许多辐照传感器在两个测试光束设施 DESY(汉堡)和 CERN-SPS(日内瓦)中进行了测试。将样品放置在光束中并长时间保持在偏压下,以使每个传感器上穿过的粒子数量达到最高。两次光束测试都得出了类似的结论,即当传感器中的平均电场大于 12 V/μm 时,这些破坏性事件就会开始发生。
1 简介 激光诱导击穿光谱 (LIBS) 可确定目标样品中存在的原子元素。使用激光脉冲蒸发目标的小样本(通常小于一微克)以产生电离原子和自由电子的等离子体。当该等离子体冷却并且自由电子与离子重新结合时,会发射出各种谱线。这些线的波长和强度可识别原始目标中的原子元素。此外,还可以推断出目标中存在的这些元素的百分比。通过计算机分析发射的谱线,可以在几分之一秒内完成测量。几乎不需要或不需要样品制备。目标可以是任何吸收所选激光波长的材料:固体、液体或气体。LIBS 被认为源于 Brech 和 Cross 的论文。1 LIBS 发展到目前的状态现在已经有据可查。2 – 4 这种简单、快速且用途广泛的技术广泛应用于实验室和现场测量。后者受到激光和光谱仪技术的进步的推动,这些进步带来了紧凑型便携式 LIBS 系统的出现。5 – 7 LIBS 的应用现在涵盖了物理和生命科学的许多领域,8 – 12 从深海测量 13、14 到火星。15 这项技术的特点是微破坏性(许多应用认为它是非破坏性的),其应用甚至延伸到珍贵艺术品,用于鉴定古代绘画作品和珍宝中的颜料,例如检查古钱币以确定其年代和真实性。16 – 19
目前,将电池固定在模块内的电池到模块方法依靠金属端板和侧板来保持模块结构。电池到模块确保了电池组的结构完整性。使用压敏粘合剂 (PSA) 包裹电池可提供电气绝缘,从而保持电池正常运行并防止电介质击穿。电池到电池组和电池到底盘的电池设计(也称为结构电池组)将电池用作结构的一部分,从而减少了金属部件的数量。使用当前的 PSA 技术,即使在最苛刻的条件下也无法保持这种结构完整性。
ANITA 来自厚靶的类大气中子 CAL 控制轴向寿命 CIA 电流诱导雪崩 DN 深 N 缓冲层 DUT 被测设备 FEM 有限元法 FIT 及时失效 FWD 续流二极管 IC 集成电路 IGBT 绝缘栅双极晶体管 LANSCE 洛斯阿拉莫斯中子科学中心 LET 线性能量传递 MCNP 蒙特卡罗 N 粒子 MOSFET 金属氧化物半导体场效应晶体管 MTTF 平均故障时间 NPC 中性点钳位 NPT 非击穿 NYC 纽约市 PID 比例 – 积分 – 导数 PSI 保罗谢尔研究所 PT 击穿 PWM 脉冲宽度调制 QARM Qinetic 大气辐射模型 RCNP 核物理研究中心 SEB 单粒子烧毁 TCAD 技术计算机辅助设计 E av 空间平均电场 P f 总设备故障率 P lf 局部设备部分故障率 RB 体区扩展电阻 T 0 温度常数 ti 故障时间 T j 结温 T SUM 器件通量积数量 V aval 雪崩电压 V CE 集电极-发射极电压 V DC 直流电压 V DS 漏源电压 Δ fi 故障通量 A 面积 E 电场 h 高度 i 故障事件总和 r 器件故障数量 Si 硅 SiC 碳化硅 ε 介电常数 λ 故障时间 ρ 净电荷密度 Ω 器件体积
Rad Hard eGaN® 晶体管专为高可靠性或商业卫星空间环境中的关键应用而设计。GaN 晶体管在空间环境中具有出色的可靠性性能,因为单事件没有少数载流子,作为宽带半导体,质子和中子的位移更小,而且没有氧化物击穿。这些器件具有极高的电子迁移率和低温度系数,从而导致非常低的 R DS(on) 值。芯片的横向结构提供了非常低的栅极电荷 (QG ) 和极快的开关时间。这些特性使电源开关频率更快,从而实现更高的功率密度、更高的效率和更紧凑的设计。