vec是将输入矩阵的列堆叠在单个向量中的操作员。具有Kronecker和结构的系统在应用线路方法上近似于在张量产品域和适当的边界条件上定义的部分微分方程(PDE)的解时,通常也会出现。的确,在众所周知的抛物线方程(例如Allen-Cahn,Brusselator,Gray-Scott,Advection-Affection-Exfusion-Reaction [8,10]或Schrödinger方程[6])的空间中,我们获得了ODES的大僵硬系统(1)。一旦给出了系统(1),就可以使用许多技术来及时整合它,尤其是我们对指数积分器的应用感兴趣[19]。实际上,它们是执行所需任务的重要方法,因为它们享有有利的稳定性,使它们适合在僵硬的制度中工作。这些方案需要计算矩阵指数和向量上的指数状矩阵函数(所谓的线体函数)的作用。它们是定义的,对于通用矩阵x∈Cn×n,为
我们对封闭多体量子系统中二点相关函数(也称为动态响应函数或格林函数)的时间行为给出了严格的分析结果。我们表明,在一大类平移不变模型中,相关函数在后期时间分解 ⟨ A ( t ) B ⟩ β →⟨ A ⟩ β ⟨ B ⟩ β ,从而证明耗散源于系统的幺正动力学。我们还表明,对于具有一般光谱的系统,围绕该后期值波动受热系综纯度的限制,热系综纯度通常随着系统规模的增加而呈指数衰减。对于自相关函数,我们提供了它们达到因式分解的后期时间值的时间上限。值得注意的是,这个界限只是局部期望值的函数,并且不会随着系统规模的增加而增加。我们给出数值示例,表明此界限在不可积模型中是一个很好的估计,并论证了出现的时间尺度可以用新兴的涨落耗散定理来理解。我们的研究扩展到其他类型的二点函数,例如对称函数和线性响应理论中出现的 Kubo 函数,我们为其给出了类似的结果。
微电子器件的散热是限制其性能和可靠性的关键问题 [1]。固-固界面的巨大热阻往往是散热的主要瓶颈 [2]。因此,了解界面热传输和设计界面以实现超高热导率的需求十分巨大。原子格林函数 (AGF) 一直是研究纳米级热传输的有力工具 [3,4],尤其是跨界面热传输。然而,传统的 AGF [3,5–12] 是在谐波范围内制定的。缺乏非谐性一直是 AGF 在实际温度范围内处理界面热传输的主要限制因素 [13,14]。在 AGF 中加入非谐性在原则上是可能的,但极具挑战性。自 2006 年 Mingo 将非谐性纳入一维原子结以来 [15],很少有人尝试使用不同程度的近似将非谐性纳入三维结构,例如通过拟合实验数据获得非谐性势能或非弹性声子散射率 [16–18]。这些研究表明了非谐性对界面热传输的重要性,并启发了我们在没有任何近似的情况下将非谐性纳入 AGF 的努力。
T-Cell Types and Functions ................................................................................................................................... 6 T-Cell Signaling Cascades ...................................................................................................................................... 7
量子电路的标准模型假设操作以固定的连续“因果”顺序应用。近年来,放宽这一限制以获得因果不确定计算的可能性引起了广泛关注。例如,量子开关使用量子系统来连贯地控制操作顺序。已经证明了几种临时的计算和信息理论优势,这引发了这样一个问题:是否可以在更统一的复杂性理论框架中获得优势。在本文中,我们通过研究一般高阶量子计算下布尔函数的查询复杂性来解决这个问题。为此,我们将查询复杂性的框架从量子电路推广到量子超图,以便在平等的基础上比较不同的模型。我们表明,最近引入的具有因果顺序量子控制的量子电路类无法降低查询复杂度,并且因果不确定超级映射产生的任何潜在优势都可以用多项式方法限制,就像量子电路的情况一样。尽管如此,我们发现,当利用因果不确定超级映射时,使用两个查询计算某些函数的最小误差严格较低。
1949 年,Moyal 发表了论文 [1],展示了通过 Weyl 对应 [2],人们能够将量子力学发展为相空间中的函数理论,该函数根据“扭曲”或 Moyal 积组成,其状态由其 Wigner 函数表示 [3]。自那以后,人们认为将这种形式主义扩展到非相对论性无自旋粒子领域之外很有用。自旋粒子的情况一度似乎特别麻烦。事实上,Stratonovich [4] 早期对自旋情况的建议包含了 Moyal 自旋理论的种子,最近已被证明 [5]。在本文中,我将 [5] 的主要思想发展为一种通用方法,我称之为“Stratonovich-Weyl 对应”,将基本经典系统与具有相同不变群的基本量子系统联系起来。 Moyal 公式的基本性质,即量子期望值应通过对相空间进行积分来“经典地”计算,事实证明,这一性质(与群协方差一起)足以识别许多不变群的扭曲乘积(以及符号演算)。文中给出了一些例子来说明 Stratonovich-Weyl 对应如何适用于“普通”Weyl 演算、纯自旋、庞加莱盘量化和伽利略旋转粒子。
摘要:自谷歌宣布实现量子霸权后,用量子计算解决经典问题成为颇具价值的研究课题。开关函数最小化是电子设计自动化(EDA)和逻辑综合中的一个重要问题,大多数解决方案都是基于经典计算机的启发式算法,用量子处理器解决这个问题是一种很好的做法。在本文中,我们介绍了一种新的混合经典量子算法,该算法使用 Grover 算法和对称函数来最小化布尔开关函数的小不相交乘积和(DSOP)与乘积和(SOP)。我们的方法基于将任意图划分为正则图,这可以通过我们提出的基于 Grover 的量子搜索算法来解决。该量子算法的 Oracle 由布尔对称函数构建并用格图实现。通过分析和量子模拟器上的模拟证明,我们的方法可以找到这些问题的所有解。
将位上的函数映射到作用于量子位上的汉密尔顿量在量子计算中有许多应用。特别是,表示布尔函数的汉密尔顿量对于将量子退火或量子近似优化算法应用于组合优化问题是必不可少的。我们展示了这些函数如何自然地用汉密尔顿量来表示,这些汉密尔顿量是泡利 Z 算子(伊辛自旋算子)的和,和的项对应于函数的傅里叶展开。对于许多由紧凑描述给出的布尔函数类,例如给出可满足性问题实例的合取范式布尔公式,计算其汉密尔顿量表示是 #P 难,即与计算其满足分配的数量一样难。另一方面,构造表示实函数的汉密尔顿量(例如每个作用于固定数量的位的局部布尔子句之和)通常不存在这种困难,这在约束满足问题中很常见。我们展示了组合规则,通过将表示更简单子句的汉密尔顿算子组合为构建块,明确构造表示各种布尔函数和实函数的汉密尔顿算子,这些规则特别适合直接实现为经典软件。我们进一步将结果应用于受控酉算子的构造,以及在辅助量子比特寄存器中计算函数值的算子的特殊情况。最后,我们概述了我们的结果在量子优化算法中的几个其他应用和扩展。这项工作的目标是提供一个量子优化设计工具包,专家和从业者都可以使用它来构建和分析新的量子算法,同时为文献中出现的各种构造提供一个统一的框架。
波函数的所有参数都是在同一时刻定义的,这意味着同时性的概念。在某种相关的问题上,量子力学中的某些现象似乎具有非局部因果关系。这两个概念都与狭义相对论相矛盾。我们建议根据狭义相对论的不变固有时间而不是标准时间来定义波函数。此外,我们将采用薛定谔的原始思想,认为波函数代表一个本体论的云状物体,我们称之为“个体结构”,其有限密度振幅在无穷远处消失。因此,测量作用可以理解为引入一个限制势,该势触发个体结构内固有的非局部机制。该机制通过将波函数与局部高斯相乘来形式化,就像在 GRW 理论中一样,但采用确定性的方式。