自主机器人系统近年来引起了越来越多的关注,在这种环境中,环境是机器人导航,人类机器人互动和决策的关键步骤。现实世界机器人系统通常会从多个传感器中收集视觉数据,并经过重新识别以识别许多对象及其在复杂的人拥挤的设置中。传统的基准标记,依赖单个传感器和有限的对象类和场景,无法提供机器人对策划导航,互动和决策的需求的综合环境理解。作为JRDB数据集的扩展,我们揭开了一种新颖的开放世界式分割和跟踪基准,介绍了一种新型的开放世界式分割和跟踪基准。JRDB-Panotrack包括(1)各种数据室内和室外拥挤的场景,以及
卷积神经网络(CNN)在培训数据集代表预期在测试时遇到的变化时,可以很好地解决监督学习问题。在医学图像细分中,当培训和测试图像之间的获取细节(例如扫描仪模型或协议)之间存在不匹配和测试图像之间的不匹配时,就会违反此前提。在这种情况下,CNNS的显着性能降解在文献中有很好的记录。为了解决此问题,我们将分割CNN设计为两个子网络的串联:一个相对较浅的图像差异CNN,然后是将归一化图像分离的深CNN。我们使用培训数据集训练这两个子网络,这些数据集由特定扫描仪和协议设置的带注释的图像组成。现在,在测试时,我们适应了每个测试图像的图像归一化子网络,并在预测的分割标签上具有隐式先验。我们采用了经过独立训练的Denoising自动编码器(DAE),以对合理的解剖分段标签进行模型。我们验证了三个解剖学的多中心磁共振成像数据集的拟议思想:大脑,心脏和前列腺。拟议的测试时间适应不断提供绩效的改进,证明了方法的前景和普遍性。对深CNN的体系结构不可知,第二个子网络可以使用任何分割网络使用,以提高成像扫描仪和协议的变化的鲁棒性。我们的代码可在以下网址提供:https://github.com/neerakara/test- time- aptaptable-neural-near-netural-netural-networks- for- domain-概括。
在过去的几十年中,描述化学结构的出版物数量稳步增加。然而,目前大多数已发表的化学信息在公共数据库中都无法以机器可读的形式获得。以更少的人工干预方式实现信息提取过程的自动化仍然是一个挑战——尤其是化学结构描述的挖掘。作为一个利用深度学习、计算机视觉和自然语言处理方面的最新进展的开源平台,DECIMER.ai(化学图像识别深度学习)致力于自动分割、分类和翻译印刷文献中的化学结构描述。分割和分类工具是同类中唯一公开可用的软件包,光学化学结构识别 (OCSR) 核心应用程序在所有基准数据集上都表现出色。这项工作中开发的源代码、训练模型和数据集均已在许可下发布。DECIMER Web 应用程序的一个实例可在 https://decimer.ai 获得。
摘要背景:磁共振(MR)图像是脑肿瘤检测最重要的诊断工具之一。在医学图像处理问题中,脑 MR 图像中胶质瘤肿瘤区域的分割具有挑战性。精确可靠的分割算法对诊断和治疗计划有很大帮助。方法:本文介绍了一种新颖的脑肿瘤分割方法作为后分割模块,该方法使用主要分割方法的输出作为输入,并使分割性能值更好。该方法是模糊逻辑和细胞自动机(CA)的组合。结果:BraTS 在线数据集已用于实现所提出的方法。在第一步中,将每个像素的强度输入模糊系统以标记每个像素,在第二步中,将每个像素的标签输入模糊 CA 以使分割性能更好。在性能饱和时重复此步骤。第一步的准确率为 85.8%,但使用模糊 CA 后的分割准确率达到 99.8%。结论:实际结果表明,与其他方法相比,我们提出的方法可以显著改善 MRI 图像中的脑肿瘤分割。
联合学习允许分布式的医疗机构可以协作学习具有隐私保护的共享预测模型。在临床部署时,接受联邦学习的模型仍会在联邦外面完全看不见的霍斯群岛上使用时仍会遭受性能下降。在本文中,我们指出并解决了联合域的生成(FedDG)的新型问题设置,该设置旨在从多个分布式源域中学习联合模型,以便它可以直接概括为看不见的目标域。我们提出了一种新颖的方法,在持续频率空间(ELCF)中称为情节学习,通过启动每个客户端在数据分散率的挑战性约束下利用多源数据分布来利用多源数据分布。我们的方法通过有效的连续频率空间插值机制以隐私保护方式传输客户之间的分布信息。通过转移的多源分布,我们进一步仔细设计了面向边界的情节学习范式,以将本地学习暴露于域分布变化,尤其是在医学图像分割场景中尤其满足模型概括的挑战。在两个医学图像分割任务上,我们的方法的有效性优于最先进的表现和深入消融实验。可以在https://github.com/liuquande/feddg-elcfs上使用代码。
结合了标准和深度可分离的扩张卷积,降低了复杂性,同时保持了高度的准确性。它有四种配置,从强大的194万参数Twinlitenet +大到超轻量级34K参数Twinlitenet + Nano。值得注意的是,TwinliteNet +大的达到了92.9%的MIOU(平均交叉路口),用于驱动面积分割,而车道分割的34.2%IOU(与联合的交集)为34.2%。 这些结果实现了能力的性能,超过了当前的最新模型,而仅需少11倍的浮点操作(FLOP)才能计算。 在各种嵌入式设备上进行了严格评估,TwinliteNet +表现出了有希望的LASCENCE和功率效率,从而强调了其对现实世界自动驾驶汽车应用的潜力。 该代码可在https://github.com/chequanghuy/twinlitenetplus上找到。达到了92.9%的MIOU(平均交叉路口),用于驱动面积分割,而车道分割的34.2%IOU(与联合的交集)为34.2%。这些结果实现了能力的性能,超过了当前的最新模型,而仅需少11倍的浮点操作(FLOP)才能计算。在各种嵌入式设备上进行了严格评估,TwinliteNet +表现出了有希望的LASCENCE和功率效率,从而强调了其对现实世界自动驾驶汽车应用的潜力。该代码可在https://github.com/chequanghuy/twinlitenetplus上找到。
水下图像细分对于诸如水下探索,海洋环境监测和资源开发等任务至关重要。尽管如此,鉴于水下环境的复杂性和可变性,改善模型准确性仍然是水下图像分割任务中的关键挑战。为了解决这些问题,本研究提出了基于标准Segformer模型的水下图像的高性能语义分割方法。首先,Segformer中的混合变压器主链被Swin Transformer替换,以增强特征提取并促进对全局上下文信息的有效获取。接下来,在骨干的下采样阶段和解码器中引入了有效的多尺度注意(EMA)机制,以更好地捕获多尺度特征,从而进一步提高了细分精度。此外,将特征金字塔网络(FPN)结构合并到解码器中,以在多个分辨率下组合特征图,从而使模型可以有效地集成上下文信息,从而在复杂的水下环境中增强了鲁棒性。对SUIM水下图像数据集进行测试表明,拟议的模型在多个指标上达到了高性能:联合(MIOU)的平均相交(MIOU)为77.00%,平均召回(MRECALL)为85.04%,平均精度(Mprecision)为89.03%,为89.03%,F1Score(MF1Score(Mf1score)为86.63%)。与标准Segformer相比,MIOU的提高3.73%,MRECALL为1.98%,Mprecision的3.38%和MF1Score的2.44%的提高,参数增加了989万。结果表明,所提出的方法通过最小的其他计算实现了出色的分割精度,从而显示了水下图像分割中的高性能。
摘要:通用的很少的语义分割(GFSS)目标在学习一组基本类别的分割后,使用一些带注释的示例将新颖对象类别进行分割。典型的GFSS培训涉及两个阶段 - 基类学习,然后是新颖的课程和学习。尽管现有方法表现出了希望,但在新颖的班级数量显着时,它们通常会挣扎。大多数当前方法都冻结了编码器主链以保持基类精度;但是,冻结编码器骨架可以严重阻碍新班级中新型信息的同化。为了应对这一挑战,我们建议在GFSS中使用增量学习策略来学习编码器骨干和新型类原型。受到低级适应技术(LORA)最近成功的启发,我们通过新颖的重量分解方法向GFSS编码器主链引入了Increthorth学习。我们新提出的等级自适应权重合并策略对在编码器主链各个层中吸收的新颖性不同。在我们的工作中,我们还将增量学习策略介绍给新型类别的类原型学习。我们在Pascal-5 I和Coco-20 I数据库上进行了广泛的实验,展示了增量学习的有效性,尤其是当新颖的类人数超过基础类别时。使用我们提出的基于权重分解的增量学习(WFIL)方法,以概括性的语义分段建立了一组新的最先进的精度值。
摘要:数据增强对于像素的注释任务(如语义分割)至关重要,在语义分段中,标签会重大努力和大量劳动。传统方法,涉及简单的转换,例如旋转和翻转,创建新图像,但通常沿关键语义维度缺乏多样性,并且无法改变高级语义属性。为了解决这个问题,生成模型已成为通过生成合成图像来增强数据的有效解决方案。可控的生成模型通过使用提示和来自原始图像的视觉引用为语义分割任务提供数据增强方法。但是,这些模型在生成合成图像时面临挑战,这些图像由于难以创建有效的提示和视觉参考而准确地反映原始图像的内容和结构。在这项工作中,我们引入了使用可控差异模型进行语义分割的有效数据增强管道。我们提出的方法包括使用类别附加和视觉事先融合的类别添加的有效及时生成,以增强对真实图像中标记的类的关注,从而使管道能够生成精确数量的增强图像,同时保留分割标记的类的结构。此外,我们在合成和原始图像合并时实现了平衡算法的类平衡算法。对Pascal VOC数据集的评估,我们的管道证明了其在生成语义分割的高质量合成图像方面的有效性。我们的代码可在此HTTPS URL上找到。
典型的图像处理任务是识别两个相邻区域之间边界(强度变化)。从经典上讲,边缘检测方法依赖于不同类型的滤膜对图像梯度的计算。因此,所有经典算法都需要至少O(2 n)的计算复杂性,因为每个像素都需要处理(Yao,Wang,Liao,Chen和Suter,2017)。已经提出了一种量子算法,该算法应该与现有边缘提取算法相比提供指数加速(Zhang,lu和gao。2015)。但是,该算法包括一个复制操作和一个量子黑框,用于同时计算所有像素的梯度。对于这两个步骤,目前都没有有效的实现。提出了一种高效的量子算法,称为量子Hadamard Edge检测,以找到边界(Yao,Wang,
