摘要:共轭聚合物已成为从柔性光电学到神经形态计算的应用的首选材料,但是它们的多分散性和趋势构成了严重的挑战,以至于它们的精确表征。在这里,在相同的实验中,真空电喷雾沉积(ESD)与扫描隧道显微镜(STM)的组合用于获取,在相同的实验中,组装模式,完整的质量分布,精确的测序以及聚合缺陷的量化。在第一步中,对于低分子质量聚合物,ESD-STM结果成功地针对NMR进行了基准测试,在此技术仍然适用。然后,表明ESD-STM能够通过表征NMR无法访问的样品来表征其超出其极限。最后,使用ESD-STM结果作为参考,提出了针对尺寸排除色谱(SEC)质量分布的重新校准程序。通过ESD-STM获得的分子尺度信息的独特性突出了其作为表征共轭聚合物的关键技术的作用。关键字:共轭聚合物,扫描隧道显微镜,同耦合,质量分布,测序
生物矿物是由活生物体形成的有机矿物质复合材料。它们是这些生物中最坚硬,最坚硬的组织,通常是多晶,其介质结构(包括纳米和微观的结晶石大小,形状,布置和方向)可能会改变戏剧性。海洋生物矿物可能是碳酸钙(CACO 3)多晶型物,晶体结构不同。出乎意料的是,诸如珊瑚骨骼和Nacre等不同的Caco 3生物矿物具有相似的特征:相邻的晶体略微不良。使用依赖性的成像对比度映射(PIC映射)在微观和纳米级处进行定量记录,并且轻微的不良对比始终在1°和40°之间。纳米识别表明,多晶生物矿物质和非生物合成球状晶体都比单晶地质库属强。分子尺度上双晶的分子动力学(MD)模拟表明,当双晶分别通过10°,20°和30°不当定向后,后臂,vathite和方解石表现出韧性最大值,这表明单独的错误可能会增加分流性的较小的差异。可以利用轻微的定向训练来合成生物启发的材料,这些材料仅需要一种材料,不限于特定的自上而下的建筑,并且可以通过有机分子(例如,阿司匹林,巧克力),聚合物,金属和生物剂以外的有机分子(例如,阿司匹林,巧克力)的自我组装来实现。
摘要 燃烧化石燃料的能源基础设施产生的碳排放有增无减,造成的灾难性影响要求我们加速开发大规模二氧化碳捕获、利用和储存技术,而这些技术的基础是对分子级化学过程的基本理解。在地下,富含二价金属的岩石可以与二氧化碳发生反应,将其永久地封存为稳定的金属碳酸盐矿物,注入后孔隙流体的 CO2-H2O 组成是主要控制变量。在此,我们讨论了水介导碳化的机械反应途径,碳矿化发生在纳米级吸附水膜中。在充满以 CO2 为主的流体的孔隙中,碳化反应局限于覆盖矿物表面的 Å 到 nm 厚的水膜,这使得金属阳离子能够释放、运输、成核和金属碳酸盐矿物结晶。尽管这看似违反直觉,但实验室研究表明,在这些低水环境中碳化速度很快,近年来,人们开始更好地理解其机理细节。本综述的首要目标是描述控制这些反应性和动态准二维界面中 CO 2 矿化的独特潜在分子尺度反应机制。我们强调了解薄水膜中独特性质的重要性,例如在纳米限制下,水的介电性质以及随之而来的离子溶解/水合行为如何变化。最后,我们确定了未来工作的重要前沿和利用这些基本化学见解开发 21 世纪脱碳技术的机会。