阿尔及利亚 Echahid Cheikh Larbi Tebessi 大学 (1)、阿尔及利亚 Mostefa Ben Boulaid-Batna 第二大学 (2)、法国艾克斯马赛大学 (3) doi:10.15199/48.2024.04.31 使用拉曼光谱和遗传算法优化退火后的 SiGe DPSi 异质结构,以增强材料特性和性能 摘要:在我们之前的调查中,我们通过拉曼光谱深入研究了双多孔硅 (DPSi) 上 SiGe 合金的复杂性,揭示了拉曼峰移、应力和多孔材料中 SiGe 合金中 Ge 浓度之间以前未知的联系。这项研究的突出特点在于其独特的方法——使用遗传算法比较结果。该方法对数据进行了全面的分析,增强了我们对其中复杂关系的理解。通过频率法验证,我们的结果为 DPSi 上的外延生长提供了宝贵的见解,为拉曼光谱、应力和合金成分之间错综复杂的相互作用提供了细致入微的视角。这些发现不仅有助于加深对 SiGe 合金的理解,还为 DPSi Streszczenie 等创新基板上的外延生长领域的进一步发展铺平了道路。 W naszym poprzednim badaniu zagłębiliśmy się w zawiłości stopów SiGe na podwójnie porowatym krzemie (DPSi) za pomocą spektroskopii Ramana, odkrywając nieznane wcześniej powiązania między拉玛纳 (Ramana) 和拉玛纳 (Ramana) 的产品均采用了 SiGe 和材料。 Cechą tego badania 开玩笑 odrębność podejścia — porównanie wyników z wykorzystaniem algorytmugenetycznego。方法是通过分析仪器来分析、分析和分析。 Nasze wyniki、potwierdzone methodą częstotliwości、dostarczają cennych informacji na temat wzrostu epitaksjalnego na DPSi、prezentując zniuansowaną perspektywę na skomplikowane wzajemne oddziaływanie między spektroskopią Ramana, naprężeniem i składem stopu。 Odkrycia te nie tylko przyczyniają się do lepszego zrozumienia stopów SiGe, ale także torują drogę do dalszych postępów w dziedzinie wzrostu epitaksjalnego na innowacyjnych podłożach, takich jak DPSi ( Optymalizacja 异质结构 DPSi wyżarzonych SiGe przy użyciu spektroskopii Ramana 和 algorytmu Genetycznego w celu uzyskania lepszej charakterystyki i wydajności materiałów ) 关键词:双多孔硅、拉曼光谱、遗传算法。关键词:多孔硅、光谱仪、算法。1. 简介 最近的技术进步凸显了减小器件尺寸和提高性能的重要性。因此,越来越需要控制结构中的应力并了解其来源。一种新兴且有前景的策略是采用柔性衬底,其中多孔硅 (PSi) 因其公认的灵活性而脱颖而出 [1, 5]。PSi 的柔韧性和柔韧性使其能够熟练地吸收 SiGe 异质外延膜引起的应力变化,这主要归功于其较高的孔密度。它与硅基微电子学的完美契合和高成本效益为将各种超轴系统(如 III-V 或 SiGe)整合到硅衬底上开辟了新的机会 [6, 7]。最近,双多孔硅 (DPSi) 已成为柔性衬底竞争中的突出候选者,特别是用于在 Si 上的异质系统(如 III-V 和 SiGe)的外延生长 [8]。双多孔硅 (DPSi) 结构由具有密封孔的超薄、原子级平坦上层和厚的、高度多孔的下层组成。然而,在该 DPSi 层上实现 SiGe 和 Ge 的低温外延的努力导致了不均匀外延层的形成,其特征是存在扩展缺陷。[9, 10]。然而,对 DPSi 层进行热处理会引起显著的形态变化,将小孔转变为大孔,同时产生拉伸应变,正如我们之前的研究 [1] 所记录的那样。这种伪衬底具有两个显着的特性:它具有高度的柔韧性和可承受拉伸应变,这为使用退火 DPSi 在 Si 上有效集成异质系统开辟了可能性。本研究深入探索退火 DPSi 作为应力模板层,通过分子束外延沉积高质量单晶 SiGe 层它具有高度的柔韧性,能够承受拉伸应变,这为使用退火 DPSi 在 Si 上有效集成异质系统提供了可能性。本研究深入探索了退火 DPSi 作为应力源模板层,通过分子束外延沉积高质量单晶 SiGe 层它具有高度的柔韧性,能够承受拉伸应变,这为使用退火 DPSi 在 Si 上有效集成异质系统提供了可能性。本研究深入探索了退火 DPSi 作为应力源模板层,通过分子束外延沉积高质量单晶 SiGe 层
铋是一种新兴的量子材料,具有令人着迷的物理特性,例如半金属-半导体 (SM-SC) 跃迁 1-8 和拓扑绝缘态。9-12 分子束外延 (MBE) 生长技术的发展已经生产出高质量的 Bi 薄膜,其中过去五十年理论上预测的丰富物理特性可以通过实验实现。例子包括但不限于卓越的表面态自旋和谷特性、2,13 超导性、14 瞬态高对称相变 15 和非谐散射。16,17 此外,介电常数的负实部和较小的虚部的结合,以及强的带间跃迁,使其在带间等离子体中应用前景广阔。 18 尽管如此,单晶 Bi 纳米薄膜在实际器件中的应用仍然受到限制,因为它们只能在晶格匹配的衬底上生长,例如硅 (111)、19 BaF 2 (111)、20 和云母。21 最近,Walker 等人介绍了一种双悬臂梁断裂 8,22 和热释放胶带 23 技术,用于将大面积 MBE Bi 纳米薄膜从 Si (111) 干转移到任意衬底;他们还表明,转移薄膜的电学/光学/结构特性与原生薄膜相当。8,23 该技术可以研究 Bi 在任意衬底上的独特电子、声子和自旋电子特性,例如用于新兴器件的透明、柔性、磁性或拓扑绝缘衬底。大多数
最近,人们研究了从二维介质和单电子转移形成单光子源的可能性 [1–4]。其想法是通过 pn 结以受控方式注入电子,从而根据需要确定性地产生单光子脉冲。横向 pn 结可由毗邻二维空穴气区域的二维电子气区域形成。电子在穿过 pn 结后与 p 型区域的空穴复合时发生单光子发射 [4]。人们在 III-V 半导体异质结构(特别是 GaAs/AlGaAs 系统)中对不同类型的横向 pn 结器件进行了多项研究。在聚焦离子分子束外延法中,两个相邻区域选择性地掺杂 Si 和 Be,以创建 n 型区域和 p 型区域 [5]。在面再生长法中,p 型和 n 型区域都是通过掺杂在 GaAs 表面不同面上的 Si 来创建的 [6, 7]。Cecchini 等人通过蚀刻掉部分 Be 掺杂的 AlGaAs 并形成 n 型 Au-GeNi 接触,从 p 型衬底形成了横向 pn 结。[8–10]。Dai 等人使用两个感应栅极来形成二维电子和空穴气体 [11, 12]。Helgers 等人使用 GaAs 衬底上的量子线作为通道,利用表面声波传输光激发电子和空穴 [13]。在其他类型的材料系统中也可以形成横向 pn 结,
通过层沉积技术进行原子级材料合成为控制材料结构和产生具有独特功能特性的系统提供了独特的机会,而这些特性无法通过传统的批量合成路线稳定下来。然而,沉积过程本身呈现出一个巨大的多维空间,传统上是通过直觉和反复试验来优化的,从而减慢了进度。在这里,我们介绍了深度强化学习在模拟材料合成问题中的应用,利用 Stein 变分策略梯度 (SVPG) 方法训练多个代理来优化随机策略以产生所需的功能特性。我们的贡献是 (1) 一个完全开源的分层材料合成问题模拟环境,利用动力学蒙特卡罗引擎并在 OpenAI Gym 框架中实现,(2) 扩展 Stein 变分策略梯度方法以处理图像和表格输入,以及 (3) 使用 Horovod 开发 SVPG 的并行(同步)实现,将多个代理分布在 GPU 和 CPU 上的单个模拟环境中。我们展示了这种方法在优化材料表面特性、表面粗糙度方面的实用性,并探索了与传统的演员-评论家 (A2C) 基线相比,代理使用的策略。此外,我们发现 SVPG 比传统的 A2C 更稳定训练过程。如果解决实施挑战,这种经过训练的代理可用于各种原子级沉积技术,包括脉冲激光沉积和分子束外延。
石墨烯是一种二维材料,以其出色的电子特性而闻名。然而,为了在实际设备中利用这些特性,必须大大减少与基板和任何周围材料的电子耦合。六方氮化硼 (hBN) 是另一种二维材料,在这方面非常有前景。它既可用于将石墨烯与基板隔离,也可用于作为栅极介电材料。虽然通过机械剥离和转移获得的设备确实证实了石墨烯/hBN 异质结构的强大潜力,但可扩展且可靠的生长技术仍有待证明:开发制造二维异质结构的新方法非常重要。通过结合项目合作伙伴的专业知识和资源,拟议研究的目的是探索和开发在与 Si 微电子兼容的基板上制造石墨烯/hBN 异质结构的各种方法。为了实现这些目标,石墨烯/hBN 异质结构将通过两种主要方法生长:分子束外延和化学气相沉积。该项目过程中开发的特定成核增强横向图案化技术可能会改善该工艺。将应用先进的显微镜和光谱技术来提供有关薄膜形态、晶体学、化学和电学特性的信息。将通过从头算密度泛函理论进行原子计算,并辅以大规模动力学蒙特卡罗模拟,以了解生长机制和最佳工艺条件。
一般范围:单光子源是量子通信和计算框架中的关键组成部分。特别是,它们是由量子物理定律本质上保护的秘密解密密钥所必需的。我们的小组开发了嵌入在自下而上的核心壳ZnSE纳米线(NWS)中的CDSE量子点(QD)的生长和光学研究,所有这些都由分子束外延(MBE)生长。我们已经表明,这些QD能够发射到室温至室温的单个光子。此外,它们在蓝绿色光谱范围内的排放尤其适合自由空间和水下通信。主题:主实习旨在控制这些CDSE/ZNSE NW-QD的增长,以提高其作为单光子发射器的效率。这意味着:(i)优化核壳型纳米线异质结构的生长,以增强发射量子产率,(ii)获得对QD形状和纯度的控制以允许纠缠光子的发射。实习结合了MBE的生长,结构表征(扫描电子显微镜)以及光学表征。它提供了探索广泛的基本物理现象(增长机制,光学特性等)在纳米尺度上,同时为量子通信和量子信息处理领域必不可少的设备的开发做出了贡献。环境与合作:我们的小组“纳米物理学和半导体”是一个联合CEA/CNRS团队,实习生将与我们小组的CEA-IRIG和CNRS-NEEL的研究人员进行紧密互动。必需的技能:纳米科学,材料科学,半导体物理学,对实验和合作工作感兴趣。开始日期:2024年2月或2024年3月:4-5个月实验室:CEA-GRENOBLE/PHELIQS/NPSC:www.pheliqs.fr/pages/npsc/presentation.aspx Contact.aspx联系人:通过电子邮件发送您的申请(包括CV)至:
将稀释的需要二氮浓度掺入传统的III – V合金中会产生带隙能量的显着减少,从而在菌株和带隙工程中带来了独特的机会。然而,宿主基质的理想生长条件与替代二氮的理想生长条件之间的差异导致这些III – V – BI合金的材料质量落后于常规III – V半导体的材料。INSB 1 x BI X虽然在实验上尚未进行,但由于INSB和III – BI材料的理想生长温度相对相对相似,因此是高质量III – V – BI合金的有前途的候选者。通过识别高度动力学上有限的生长状态,我们通过分子束外延展示了高质量INSB 1 x BI X的生长。X射线衍射和Rutherford反向散射光谱法(RBS)测量合金的二晶浓度,并与光滑的表面形态结合,通过原子力显微镜测量,表明Unity-sticking Bismuth掺入了从0.8%到1.5%到1.5%的bismuth浓度,均为0.8%至1.5%。此外,从INSB 1 x BI X中观察到了第一次光致发光,并在230 K时显示了高达7.6 L m的波长延伸,二匹马诱导的带隙还原为29 MeV/%bi。此外,我们报告了INSB 1 x BI X的带隙的温度依赖性,并观察到与传统III – V合金相一致的行为。提出的结果突出了INSB 1 x BI X作为访问Longwave-Infrared的替代新兴候选者的潜力。
2 SR 2 CACU 2薄膜开口,该膜是根据2的极端温度进行的,将BCS-Einstein冷凝物的BCO理论模型研究到理论模型中。 div>跨界温度(τcr)在探索的极限材料(τcr)的2D通量中,地层的相干长度(ξL)。 div>同时,即将接近平均面积的临界温度(TC MF)也取决于温度温度(T C),Ginzburg。 div>关键字:极端变速箱,连贯的Longugu,交叉温度DOI:10.70784 / azip.2.2025111介绍当前,众所周知,它将购买高度关键的多临界游行游行。 div>使用分子束上皮的方法从激光[2]中获得Ste-Ximetric含量[1],陶瓷nisgaqah [2],使用二极管授粉[3],高频脑力甲授粉[4]和高频膜开始使用高频膜。 div>该方法的两种形式的收到的特征是复杂的技术制备,其组件由特殊的化合物组成。 div>最近,发现了两种材料的发现,以及购买薄膜(50-200 mkm)的购买,以及收购50-200 mkm的收购)。 div>他们的购买Techno-logi非常简单,可以轻松获得薄层的胶片。 div>因此,他们的购买不需要由复杂技术制剂和组件的特殊化合物组成。 div>应该在同一时间使用模具方法购买各种极端主义结构。 div>让我们以下面的方式考虑两层-CA-CA-CA-O两层厚层材料。 div>5]这是带有盖章密封方法的BI-SR-CA-O实质性螺旋。 div>Extreme Bi-SR-CA-CA-O for the pliased compositions to get the plyonka, the pie was developed by adding oxalatic compounds and surface active agent to organic solvents. div> 抛光月份的MGO用作基础。 div>Extreme Bi-SR-CA-CA-O for the pliased compositions to get the plyonka, the pie was developed by adding oxalatic compounds and surface active agent to organic solvents. div>基础。 div>
宽带间隙(WBG)碱性晶酸盐透明氧化物半导体(TOSS)近年来引起了越来越多的关注,因为它们的高载流子迁移率和出色的光电特性,这些特性已应用于诸如Flat-Panel显示器等广泛的应用。然而,大多数碱性地球酸盐是由分子束外延(MBE)生长的,有关锡源的问题存在一些棘手的问题,包括带有SNO和SN源的波动性以及SNO 2源的分解。相反,原子层沉积(ALD)是具有精确的化学计量控制和原子尺度上可调厚度的复杂stannate钙钛矿生长的理想技术。在此,我们报告了la-srsno 3 /batio 3 perovskite异质结构异质集成在SI(001)上,该结构使用ALD种植的La掺杂的Srsno 3(LSSO)作为通道材料,并用作MBE生长的Batio 3(BTO)作为介电材料。反射性高能电子衍射和X射线衍射结果表明每个外延层的结晶度为0.62,全宽度最高(FWHM)。原位X射线光电子光谱结果证实,ALD沉积LSSO中没有SN 0状态。这项工作扩展了当前的优化方法,用于减少外在LSSO/BTO钙钛矿异质结构中的缺陷,并表明过量的氧气退火是增强LSSO/BTO异质结构的电容性能的强大工具。Besides, we report a strategy for the post-treatment of LSSO/BTO perovskite heterostructures by controlling the oxygen annealing temperature and time, with a maximum oxide capacitance C ox = 0.31 μF/cm 2 and a minimum low- frequency dispersion for the devices with 7 h oxygen annealing at 400 C. The enhancement of capacitance properties is primarily attributed to a在额外的异位过量氧气退火过程中,膜中氧空位的减少和异质结构界面中的界面缺陷。
ZnMgO 固溶体体系之所以受到关注,是因为通过改变其成分可以调整许多重要的物理特性。该合金体系在室温下覆盖了直接带隙 3.36 eV(ZnO)和 7.8 eV(MgO)之间的宽紫外 (UV) 光谱范围,因此对短波长光学应用非常有吸引力,例如紫外探测器 [1-3] 和光发射器 [4-6]。Zn 1-x Mg x O 体系 [7,8] 通过调整体系中的成分(x 参数值),可以模拟宽光谱范围内的光学、发光和光电特性。通过改变成分,可以生产用于短波长 UV-A(320-400 nm)、UV-B(280-320 nm)和 UV-C(200-280 nm)辐射的装置 [9,10]。这些材料的纳米结构化,特别是纳米结构薄膜的生产,是模拟特定性能的另一个元素。各种技术已用于制备 ZnMgO 薄膜,如脉冲激光沉积 (PLD) [11]、等离子体增强原子层沉积 (PE-ALD) [12]、热液 [13]、化学浴沉积 (CBD) [14]、射频等离子体辅助分子束外延 (RF-MBE) [15-18]、DC [19, 20] 和 RF [21-23] 磁控溅射、化学气相沉积 (CVD) [24]、金属有机化学气相沉积 (MOCVD) [25, 26]、气溶胶沉积 [27-31] 和溶胶-凝胶旋涂 [30, 32-35]。气溶胶沉积法具有易于控制和处理化学品和基材以及对化学计量具有出色控制的优点。由于采用非真空设备、低温处理、低缺陷密度和低环境影响,该方法适合于以更快的速度和低成本制备高质量大面积薄膜。该方法可以在相当短的时间内沉积薄膜,易于掺杂,并制备具有良好电学和光学性质的均匀薄膜。