在开发 saRNA-LNP COVID-19 疫苗时,Precision NanoSystems 证明了早期测试配方对于下游工艺参数的重要性。这种治疗方法的一个重要步骤是在线稀释和缓冲液交换,以从配方中去除乙醇并准备储存在最终的低温缓冲液中。虽然两种配方(LNP1 和 LNP2)最初在不同流速和规模(Ignite、Blaze、GMP)下产生相似的 CQA(粒度、多分散性和包封效率),但在 TFF 处理后,LNP1 的尺寸显着增加,而 LNP2 保持了这些特征。这项研究表明,一些配方对下游工艺很敏感,通过小规模测试配方尽早识别这些 CPP 可以节省时间和材料,并降低扩大规模的风险。
在开发SARNA-LNP COVID-19疫苗时,精密纳米系统证明了对下游过程参数进行早期测试的重要性。这种治疗性的重要步骤是内线稀释和缓冲液交换,以从配方中去除乙醇并准备在最终冷冻器中存储。在TFF处理LNP1之后,两种配方(LNP1和LNP2)最初在不同的流速和尺度(IGNITE,BLAZE,GMP)下产生了相似的CQA(粒径,多分散性和包封效率),而LNP2的大小显着增加,而LNP2则保持了这些特征。这项研究表明,某些配方对下游过程敏感,并且通过较小规模测试配方尽早确定这些CPP可以节省时间,材料,并降低规模上的危险。
审查发现,特许经营行业现有的在线教育和咨询资源方法并不理想。虽然该行业的参与者可以获得资源,但这些资源分散在多个领域。可用资源的分散性增加了搜索成本,以至于进入该行业的参与者经常发现很难找到信息或选择不利用所有可用的资源。因此,一些特许人和特许经营人没有所有必要的信息来了解他们在《守则》下的义务、特许经营系统的期望或在特许经营协议中出现争议时可用的支持系统。政府的回应同意 ASBFEO 就这些问题为该行业提供更好的指导,尽管特许经营人和特许人都可以选择是否利用这些资源。
摘要:以磺基甜菜碱或磷酰胆碱两性离子为侧链基团的功能性聚合物被证实既是 CsPbBr 3 钙钛矿纳米粒子 (PNP) 的配体,又是其基质。这些聚合物可制备出具有出色 NP 分散性、光学透明度和出色的抗 NP 降解性(暴露于水中时)的纳米复合膜。含两性离子的共聚物与 PNP 的多齿相互作用可诱导分散或弱聚集的纳米复合形态,具体取决于聚合物中两性离子官能团的程度。将其他官能团(例如二苯甲酮侧链基团)加入聚合物中可产生可光刻图案化的薄膜,而时间分辨光致发光测量可深入了解 PNP 在两性离子聚合物基质中的电子影响。
有效的基因疗法依赖于有效的基因递送系统。病毒基因递送在转移和表达外部基因方面表现出色。但是,它们的免疫力和大规模生产的困难限制了其临床应用。相比之下,由于免疫原性较小,对大规模生产的便利性,基于纳米颗粒的基因递送系统的注意力越来越多。然而,与病毒系统相比,它们的转染效率差仍然是一个重要的障碍。在主题研究中,我们研究了在HEK293T,CALU-3,CALU-6细胞系和原代人骨髓间充质干细胞(MSC)中,我们调查了PEI涂层石墨烯氧化物的转染效率。氧化石墨烯的高表面比和良好的生物相容性使其成为基因递送系统的吸引力。但是,在水性环境中氧化石墨烯的低分散性是需要征服的第一个障碍。为此,我们通过在pH值为7的pH值中超声超声来增强水中氧化石墨烯在水中的分散性和稳定性。然后,将氧化石墨烯与分支PEI(25 kDa)偶联以具有局部电荷,从而使其能够将其凝结为具有天然负潜能的核酸。我们合成的纳米载体(GO-PEI)的生理化学特性由DLS,FT-IR和AFM确定。多聚体中使用的质粒包含GFP基因,从而使我们能够通过荧光显微镜和流式细胞体 - 尝试验证转染效率。虽然GO-PEI载体在转染HEK293T细胞方面高效,但MSC和Calu-3细胞的转移效率明显低。我们假设这些细胞中GO-PEI转染效率较低的主要原因是由于其较高的毒性。尽管如此,考虑到氧化石墨烯在药物输送中的各种优势以及其在生物医学中的光学和电气应用,我们建议用更具生物相容性材料功能化氧化氧化烯,以增强其作为这些细胞类型中基因载体的潜力。
BLENDO 有 16 种型号:2、3、4、6 或 8 种成分,吞吐量为 150、300、600、1000 至 2000 kg/h。标准配备集成补料阀,滑动门类型。倾斜螺旋进料器可提高计量精度并防止不必要的滴料。它们由直流电机驱动,速度范围很广,配有长寿命刷子和闭环速度调节。螺旋钻适用于颗粒或自由流动的粉末。级联混合器提供出色的添加剂分散性,包括具有不同堆积密度或颗粒大小的成分。集成称重下水道料斗,用于挤出机需求或重量式吞吐量控制。称重传感器用于感应重量变化(无超声波或电容式传感器)。易于使用,只需设置剂量百分比即可。
理论和实验研究均已认识到,优化聚合物-碳纳米管界面对于将碳纳米管的优异性能转化为先进复合材料至关重要。在纳米管和聚合物基质之间构建化学键是形成强界面最有效的解决方案 [5]。这可以通过对碳纳米管进行化学改性来实现,使得附着在纳米管上的功能基团可以有效地与聚合物基质交联。对碳纳米管中的功能基团进行系统工程设计可显著改善复合材料的性能。例子包括合成杨氏模量、拉伸强度和热稳定性大大提高的 SWCNT-尼龙复合材料 [4-6],PAMAM 功能化的 SWCNT/环氧树脂复合材料 [7]。功能化的 CNT 在溶剂和/或聚合物中具有良好的分散性非常重要,因为只有使用解束的纳米管才能实现有效的界面。
polytools对于具有常见,已知或可疑最终组的聚合物和多分散性<1.5。它可以接受使用挠性分析或其他来源和挠性分析质谱创建的峰值列表。使用它的最简单方法是携带处理的文件,这些文件需要得到充分校准并具有正确的峰值列表,直接通过在flexAnalysis菜单选项中选择工具> polytools直接进入polytools。或者,可以通过文件>“打开”作为质量/强度或质量/高度/区域峰值列表的ASCII文本文件将外部数据带入polytools,这些文件是空间,选项卡或逗号分隔的。对于提交的峰列表,重要的是要确定所有相关峰,并且具有正确计算的聚合物表征参数的合理确定强度。
在开发SARNA-LNP COVID-19疫苗时,精密纳米系统证明了对下游过程参数进行早期测试的重要性。这种治疗性的重要步骤是内线稀释和缓冲液交换,以从配方中去除乙醇并准备在最终冷冻器中存储。在TFF处理LNP1之后,两种配方(LNP1和LNP2)最初在不同的流速和尺度(IGNITE,BLAZE,GMP)下产生了相似的CQA(粒径,多分散性和包封效率),而LNP2的大小显着增加,而LNP2则保持了这些特征。这项研究表明,某些配方对下游过程敏感,并且通过较小规模测试配方尽早确定这些CPP可以节省时间,材料,并降低规模上的危险。