连。这些关系可以是“is_a”或“part_of”,形成了一个有向无环图(DAG)的结构。 GO注释是将基因产 物与GO术语相关联的过程,这对于理解基因的功能和进行基因表达分析至关重要。 GO注释的结果可 以用于多种分析,包括基因本体论富集分析,这是一种统计方法,用于确定在一组基因中哪些GO术 语的出现频率显着高于随机预期,从而揭示基因集的生物学功能。
作为研究主题。通过分析中国废弃的矿山和新能源的分布,并考虑了借用贷款省电网的峰值法规状态,这表明了在西方开放坑矿建造抽水储存动力站的影响。基于西方开放坑矿的相关工程背景和地质探索结果,为泵存储电站的上下储层的现场选择和设计提供了解释,以及水运输系统的布局。泵储存电站的构造将改变废弃的矿井中的水位,影响其斜坡的稳定性。在西部开放坑矿中构建下储层的横截面模型,并将其导入地理厂软件。使用极限平衡方法与稳态渗漏场结合在一起,分析水位-395 m,-350 m,-250 m的坡度稳定性。结果表明,西部开放坑矿的泵送储存动力站在技术上是可行的且经济合理的。它可以有效地满足借用省内电网的峰值调节和频率调制要求,从而减轻了该地区的运营压力。拟议的西部开放坑矿井泵站存储电站的安装容量为1 200兆瓦,全负载运营时间为5小时。坑的东部区域充当下部储层,而纳哈尤湖(Nanhuayuan Lake)则充当上层储层,其容量大致相等。西部开放坑矿山的潜在滑动风险可能在特定的水位下发生。为了确保泵储存电站运行后的储层路堤的稳定性,需要采取进一步的反海上加强措施。关键字:废弃的矿山;泵存储;稳态渗漏;极限平衡方法;斜率稳定性
等方面 . 人机功能分配主要包括静态和动态两种类型 , 静态功能分配是从功能特性和需求分析入手 , 通过比较人 和系统在完成该功能上的能力优势或绩效优劣 , 决定该功能分配给人还是系统 . 动态功能分配方法则是在静态 人机功能分配的基础上 , 当动态触发机制响应时 , 允许系统在运行阶段根据情况的变化将功能在人与系统之间 动态地重新分配 , 提高整体的工作效率 . 多智能体的任务分配是指在作战开始前 , 指挥中心通常会根据已掌握的 战场信息 , 对己方作战单元进行任务预分配 . 但随着战场情景变化以及突发情况的出现 , 预分配方案可能会使得 执行任务的效能降低 , 多智能体如何调整自身任务 , 使得执行任务的效能保持最大是其研究的主要内容 . 计算机 任务调度研究的是将任务动态地调用给各个虚拟机并提供给用户使用 , 怎样合理地将任务分配给不同的虚拟机 , 进而提升整个系统的性能是其研究的重点 . 以上分配原则对于多乘员分配有很好的参考价值 , 但舱室乘员间任 务分配时 , 主要考虑到人的特性 , 需要以人的理论基础来加以研究 [4] . 针对实际作战过程中 , 乘员应对非预期事件效率低下的问题 , 本文提出了一种多乘员协同动态任务分配方 法 . 在非预期事件触发时 , 对任务进行 DAG 分解及分层 , 根据乘员脑力负荷、乘员能力、任务相关度以及时间成 本四个因素 , 按照一定的任务分配顺序 , 基于 AHP-TOPSIS 方法进行乘员的优选 , 实时更新乘员状态 , 并以此为 依据进行下一任务的分配 . 任务分配过程可实现随乘员状态变化而动态调整 , 达到负荷均衡、效能最优 , 从而将 多任务分配问题简化为单个任务的多属性决策问题 .
度变化。数据来源于文献[1]。图2。第一个发现UTE 2超导率:(a)电阻率的温度依赖性; (b)低温特异性热数据的电贡献的温度依赖性。数据取自参考。[1]。
摘 要 : [ 目的 ] 为解决无人艇的船载导航雷达对养殖区 、 浮筒 、 小型漂浮物等海洋漂浮障碍物感知效果不 佳的问题 , 提出一种基于导航雷达回波视频数据构建与更新的占据栅格地图的环境感知方法。 [ 方法 ] 首 先 , 采用多级集合的形式描述雷达点迹与回波点间的包含关系 , 为栅格地图构建奠定基础 , 期间 , 基于群相邻 关系对近邻点迹进行凝聚 , 抑制目标分裂导致的航迹偏差 ; 然后 , 利用所提的基于自然对数函数的占据栅格 地图概率更新算法 , 通过合理利用历史数据区分海杂波与微小海洋漂浮障碍物 ; 最后 , 建立基于点迹属性的 栅格地图概率扩散模型 , 以较好地保证典型动态目标占据栅格更新的实时性。 [ 结果 ] 实船试验结果表明 , 所提方法可准确获取养殖区 、 浮筒等成片海洋漂浮障碍物的轮廓信息 , 抑制目标分裂现象 ; 与经典方法相比 , 所提方法对干舷 0.5 m 的小型漂浮物首次发现距离提升了 78.34 m , 定位精度提升了 1.42 m 。 [ 结论 ] 所提方 法能够实现对多种海洋漂浮障碍物 、 海面运动目标的准确感知 , 确保无人艇航行安全。
探讨HERA-JANUS模型本身的有效性,以期为我国航空安全提供可能的帮助。本文根据此次空难的具体描述,通过人因失误类型分析、人因失误认知分析、相关因素分析等,确定了各环节管制员人因失误因素的类型及特点。最后进行总结得出结论,并提出切实可行的方法,以减少管制员人因失误,加强相关监管,促进航空事业安全高效发展。