定量SEM/EDS分析的原位标本方向方法的开发和验证粘土Klein 1*,Faith Corman 1,Joshua Homan 1,Brady Jones 1,Brady Jones 1,Abbeigh Schroeder 1,Heavenly Duley 1和Chunfei Li 11。宾夕法尼亚州克拉翁大学,化学,数学和物理系,美国宾夕法尼亚州克拉里昂 *通讯作者:clay.w.klein@gmail.com定量分析具有扫描电子/能量分散式X射线/能量的标本元素组成的元素组成,以确保X射线光谱(SEM/EDIMENS)不需要一定的情况。错误。特别是,为了准确的定量EDS分析,标本表面必须足够平坦,并且与SEM的电子束具有正交性[1,2]。在本演示文稿中,我们报告了一种在SEM中,肉眼看不见的足够平坦的微观表面的方法的开发和验证,使得表面与传入的电子束是正交的。该方法基于使用多个SEM图像来测量两个点之间的距离的变化,而两个点之间的界线垂直于SEM倾斜轴,在不同的倾斜角度上。该方法利用了多个SEM图像和测量值,它为我们当前在开发和统计上分析试样方向过程中使用的工具提供了一个良好的测试基础,比以前的方法更有效,更精确[3]。SEM具有两个操作,可以实现对象的原位操纵:旋转和倾斜。要应用该方法,我们使用了以随机旋转和倾斜角度定向的宏观平坦样本。2。[4]。旋转操作通过平行于传入的电子束(定义为轴)的轴的角度旋转样品,而倾斜操作则通过围绕轴(轴)垂直于旋转轴的角度倾斜样品。对于以某个任意角度倾斜的平面,我们将适当的角度定义为 - 参数空间中的坐标,使得平面的表面与电子束正交。一旦确定了足够平坦的平面,我们可以通过以下步骤确定适当的角度:(1)以增量旋转角度进行一系列SEM图像,((2)用一定角度倾斜样品,(3)重复(3)重复(1)和(4)度量,对于每个旋转角度,在斜角和直至图像中的两个特征之间的距离。可以通过形成倾斜度的比率并在每个旋转角度以测量为单位,并将理论上确定的曲线与数据拟合,从而计算出适当的角度。具有50 m的视野,每10°旋转以0°,20°和-20°旋转每10°旋转。测量是在SEM图像上进行的,如图1形成两个点之间的距离之比。在图中显示了这些测量结果的曲线使用最小二乘曲线拟合程序,确定最佳和值。图中还显示了以适当角度定向的样品的图片2;我们看到表面似乎与电子束的方向是正交的。
Technovative Consulting 成功帮助这家位于浦那的 NBFC 设计并实施了全面的数据管道解决方案,用于定期报告和 PAR 分析。通过自动化数据工作流程、引入实时跟踪和提高报告准确性,NBFC 能够增强其风险管理、运营效率和决策能力。该解决方案为该公司提供了可扩展、高效的基础设施,不仅改善了其黄金贷款组合的管理,还使其随着业务的扩展而为未来增长做好准备。
发布日期:2024 年 11 月 1 日 喀布尔日期:2024 年 12 月 17 日 摘要:本研究深入研究了人工智能 (AI) 和大数据分析对企业管理的影响。人工智能和大数据分析使决策和战略规划过程更加有效、快速和数据驱动,从而为企业提供了显着的竞争优势。该研究强调了人工智能和大数据分析如何使企业能够更好地分析客户行为、预测市场趋势并提高运营效率。研究结果表明,数据驱动的决策过程为企业提供了战略优势,增强了客户满意度和品牌忠诚度。然而,该研究还解决了数据安全、隐私问题、高实施成本以及对训练有素的人员的需求等挑战,为如何有效管理这些问题提供了见解。此外,该研究评估了人工智能和大数据分析对企业管理的长期影响,强调了培养数据导向管理文化的必要性。建议未来的研究重点关注人工智能和大数据分析的不断发展的应用,并强调将这些技术整合到战略规划和决策过程中的重要性。这项研究揭示了人工智能和大数据分析在推动可持续增长和增强企业竞争优势方面可以发挥的重要作用。关键词:人工智能、大数据分析、决策、战略规划、企业管理 Özet:在分析过程中,YZ 和 YZ 的分析结果将根据其重要性进行评估。 YZ 已经完全分析,我已经制定了战略计划,并且已经完成了日常工作。恰里什马,YZ 已经完全分析了我的分析,并进行了分析,并进行了一些操作。保加利亚语的实际情况是,我的策略是通过使用策略来实现的。 Ancak、veri güvenliği、gizlilik、yüksek maliyetler 和 personel eğitimi gibi uygulama zorlukları da ele alımakta、bu zorlukların üstesinden gelmek için öneriler sunulmaktadır。 YZ 已将其彻底分析,并对其进行了彻底的分析。 Gelecek araştırmalar için YZ ve büyük veri analitiği uygulamalarının gelişen yönlerine odaklanılması önerilmekte ve işletmelerin stratejik planlama ve karar alma süreçlerine bu teknolojilerin entegrasyonunun önemine dikkat çekilmektedir。布恰利什玛,揭示了人工智能和大数据分析如何有效帮助企业实现可持续增长并提高竞争力。关键词:人工智能、大数据分析、决策、战略规划、企业管理
结果和讨论:在这里,我们组装并注释了A. albus的完整基因组,提供了一个染色体级的组件,总基因组大小为5.94 GB,而Cortig N50为5.61 MB。A. albus基因组组成了19,908个基因家族,其中包括467个独特的家族。与A. konjac相比,A. albus的基因组大小稍大,可能受到了最近的全基因组重复事件的影响。转录和代谢分析揭示了参与苯基 - 丙型生物合成的差异表达基因(DEG)和差异积累的代谢产物(DEG)的显着富集,植物激素信号传递,苯基丙氨酸代谢,苯丙氨酸的代谢和生物合成的生物合成,苯基烷胺,Tyroptanin和Tyropt。这些发现不仅提高了对A. albus的遗传和进化特征的理解,而且还为未来研究Konjac对南部疫病疾病的抗性机制的研究奠定了基础。
● 模型训练:在训练模型之前,读取 (2) 生成的特征并进行预处理。例如,如果需要,对数据进行归一化,并根据可用数据量按比例拆分为训练、验证和测试数据集。模型训练完成后,将与 model.json 文件一起存储 (3),该文件包含有关训练模型的相关信息,例如每个隐藏层的神经元数量、隐藏层数量、使用的变量(后拟合残差、SNR 等)等。● 批量推理:模型训练完成后,可以通过加载保存的模型 (3) 并对新的 GNSS 数据执行推理过程将其部署到生产中。
识别并最终消除吞吐量瓶颈是提高生产系统吞吐量和生产率的关键手段。然而,在现实世界中,消除吞吐量瓶颈是一项挑战。这是由于工厂动态环境复杂,数百台机器同时运行。学术研究人员试图开发工具来帮助识别和消除吞吐量瓶颈。从历史上看,研究工作一直集中在开发分析和离散事件模拟建模方法来识别生产系统中的吞吐量瓶颈。然而,随着工业数字化和人工智能 (AI) 的兴起,学术研究人员基于大量数字车间数据,探索了使用 AI 消除吞吐量瓶颈的不同方法。通过进行系统的文献综述,本文旨在介绍使用 AI 进行吞吐量瓶颈分析的最新研究成果。为了让学术界的 AI 解决方案更容易为实践者所接受,研究工作分为四类:(1)识别、(2)诊断、(3)预测和(4)开处方。这是受到现实世界吞吐量瓶颈管理实践的启发。识别和诊断类别侧重于分析历史吞吐量瓶颈,而预测和开处方侧重于分析未来的吞吐量瓶颈。本文还提供了未来的研究主题和实用建议,可能有助于进一步突破 AI 在吞吐量瓶颈分析中的理论和实际应用的界限。
方法:为了推断 AS 与各种糖尿病相关特征(包括 1 型糖尿病 (T1DM)、T2DM、血糖水平、空腹血糖、糖化血红蛋白和空腹胰岛素)之间的因果关系,我们采用了孟德尔随机化 (MR) 分析。我们从 IEU OpenGWAS 数据库、GWAS 目录和 FinnGen 数据库中获取了暴露和结果变量的 GWAS 汇总数据。为了综合 MR 分析的结果,我们应用了使用固定或随机效应模型的荟萃分析技术。为了识别和排除与结果表现出水平多效性的工具变异 (IV),我们使用了 MR-PRESSO 方法。使用 MR-Egger 方法以及 Q 和 I^2 检验进行敏感性分析,以确保我们的研究结果的稳健性。
列B:子代理或组件。C列C-G:这些列包含有关每个帮助清单程序的预填充信息。栏H:确定负责监督该计划的高级政治任命的电子邮件。列I:指示该程序是否有任何未决的资金公告。 列J:指示此程序是否有预期的义务或资金支付,直到3/15/2025。 列K:指示此程序是否具有任何法定要求,要求在3/15/2025之前义务或支付资金。 列L:提供下一项义务或资金支出的估计日期。 列M-T:对每个问题(是/否)提供回答。 列U:提供有关程序或项目活动的任何其他相关信息。列I:指示该程序是否有任何未决的资金公告。列J:指示此程序是否有预期的义务或资金支付,直到3/15/2025。列K:指示此程序是否具有任何法定要求,要求在3/15/2025之前义务或支付资金。列L:提供下一项义务或资金支出的估计日期。 列M-T:对每个问题(是/否)提供回答。 列U:提供有关程序或项目活动的任何其他相关信息。列L:提供下一项义务或资金支出的估计日期。列M-T:对每个问题(是/否)提供回答。列U:提供有关程序或项目活动的任何其他相关信息。列U:提供有关程序或项目活动的任何其他相关信息。
近年来非酒精性脂肪肝疾病(NAFLD)病例的迅速增加引起了人们的重大关注。准确地识别组织的改变对NAFLD的诊断至关重要,但是该任务在病理图像分析中带来了挑战,特别是与小规模的数据集有关。最近,从完整的微调转变为改编视觉模型的提示的范式转变为小规模数据分析提供了新的视角。然而,基于任务不足提示的现有提示方法主要是为了通用图像识别而开发的,该方法在为复杂病理学图像提供指导的指示方面缺乏。在本文中,我们提出了基于定量属性的提示(QAP),这是一种专门用于肝脏病理学分析的新提示方法。QAP基于两个定量属性,即基于K功能的空间属性和基于直方图的形态学属性,旨在对组织状态进行标准评估。此外,condi-
空间幻象技术的最新进展已实现了分析组织形态,细胞组成和生物分子表达模式的新方法。这些进步正在促进数字病理新兴领域中新的计算工具和定量技术的开发。在这篇综述中,我们调查了使用数字化的组织病理学幻灯片和补充材料开发用于空间映射的OMIC数据分析的计算方法的当前趋势,并重点介绍了与泌尿生殖学肿瘤学研究有关的工具和应用。评论包含三个部分:1)组织幻灯片分析的图像处理方法的概述; 2)与空间解决的OMIC数据分析的机器学习集成; 3)讨论当前局限性和未来在临床决策过程中整合机器学习的方向。