高性能计算 (HPC) 技术的进步已经能够通过归纳和建设性方法为心血管 (CV) 科学提供信息。临床试验允许比较干预的效果,而无需了解机制。这是归纳方法的典型示例。在 HPC 领域,训练由神经网络构建的人工智能 (AI) 模型以使用大规模多维数据集预测未来的 CV 事件是可以依赖并帮助理解机制基础以进行优化的对应方法。然而,与临床试验相比,AI 可以在个人层面计算事件风险,并有可能为个性化医疗的应用提供信息和改进。尽管 AI 具有明显的优势,但 AI 分析的结果可能会识别出多维数据与临床结果之间原本无法识别/意料之外(即非直观)的关系,这可能会进一步揭示潜在的机制途径并确定潜在的治疗目标,从而有助于从因果关系中解析观察关联。建设性方法对于克服现有知识的局限性和固有偏见以实现对心血管疾病复杂病理生物学的更深入理解仍然至关重要。HPC 技术有可能在心血管基础和临床科学中支撑这种建设性方法。一般来说,即使是复杂的生物现象也可以归结为简单的生物/化学/物理定律的组合。在演绎方法中,重点/意图是通过简单原理的组合来解释复杂的心血管疾病。
主要关键词