摘要 — 脑机接口已被研究了 20 多年,并且具有巨大的开发应用潜力,可供医生诊断疾病或帮助患有严重神经系统疾病的患者恢复与社会互动。要达到这些目的,需要分析脑电图数据的技术以及训练模型以识别模式或控制设备的算法。TensorFlow 是 Google 团队为内部使用而开发的机器学习,于 2015 年向公众发布。由于它可以在深度学习神经网络上进行训练和测试,因此可以用于脑电图数据。该项目使用 TF-Keras 和 TensorFlow-DNN 来训练使用脑电图数据对大脑状态进行分类的模型。Neurosky Mindwave Mobile 耳机和由 Micro:bit 开发的新设备是该项目的脑电图信号记录器。采用了最小-最大归一化、集合经验模态分解 (EEMD)、提取等多种技术来分析记录的脑电图数据。结果表明,在对来自 Micro:bit 设备的 EEG 数据进行分类时,TensorFlow-Keras 和 TensorFlow - DNN 模型的准确率为 97%,而 XGBoost 的结果为 98%。结果证实了 TensorFlow 在识别 EEG 数据方面的应用能力。对上述结果有贡献的数据处理技术是最小最大规范化和数据提取。此外,我们还验证了记录数据中的低频漂移对于使用 EEG 数据识别大脑状态至关重要。结果还显示了使用 EEMD 技术生成的 IMF 作为特征来构建使用 EEG 数据对大脑状态进行分类的模型。索引词 —TensorFlow、EEG、XGBoost、TensorFlow-Keras (TF-Keras)、TensorFlow-DNN (TF-DNN)、集合经验模态分解 (EEMD)、Neurosky、Micro:bit、脑机接口 (BC I)
主要关键词