摘要:本文的主要目的是提供有关如何创建卷积神经网络 (CNN) 以从 EEG 信号中提取特征的信息。我们的任务是了解为各种应用场景创建和微调 CNN 的主要方面。我们考虑了 EEG 信号的特征,并探索了各种信号处理和数据准备技术。这些技术包括降噪、滤波、编码、解码和降维等。此外,我们对众所周知的 CNN 架构进行了深入分析,将它们分为四个不同的组:标准实现、循环卷积、解码器架构和组合架构。本文还对这些架构进行了全面评估,涵盖了准确度指标、超参数和附录,其中包含一个表格,概述了用于从 EEG 信号中提取特征的常用 CNN 架构的参数。