摘要 目的。迄今为止,在基于 EEG 的脑机接口中,黎曼解码方法与深度卷积神经网络的全面比较仍未在已发表的研究中出现。我们使用 MOABB(所有 BCI 基准之母)来解决这一研究空白,将新型卷积神经网络与最先进的黎曼方法进行比较,这些方法涉及广泛的 EEG 数据集,包括运动想象、P300 和稳态视觉诱发电位范式。方法。我们使用 MOABB 处理管道系统地评估了卷积神经网络(特别是 EEGNet、浅层 ConvNet 和深度 ConvNet)与成熟的黎曼解码方法的性能。该评估包括会话内、跨会话和跨受试者方法,以提供模型有效性的实用分析,并找到在不同实验设置中表现良好的整体解决方案。主要结果。我们发现在会话内、跨会话和跨受试者分析中,卷积神经网络和黎曼方法之间的解码性能没有显着差异。意义。结果表明,在使用传统的脑机接口范式时,在许多实验环境中,CNN 和黎曼方法之间的选择可能不会对解码性能产生重大影响。这些发现为研究人员提供了灵活性,可以根据诸如易于实施、计算效率或个人偏好等因素选择解码方法。
主要关键词