近年来的抽象背景,三维(3D)球体模型在科学研究中变得越来越流行,因为它们提供了一种与生理相关的微环境,可以模仿体内条件。与传统的二维细胞培养方法相比,它可以更好地了解3D球体测定法具有优势,因为它可以更好地了解细胞行为,药物功效和毒性。但是,使用3D球体测定法受到了用于球体图像分析的自动化和用户友好的工具的阻碍,这会对这些测定的可重复性和吞吐量产生不利影响。为解决这些问题的结果,我们开发了一种完全自动化的,基于Web的工具,称为Spheroscan,该工具使用了带有卷积神经网络(R-CNN)的名为“掩码区域”的深度学习框架进行图像检测和细分。为了开发一个可以从一系列实验条件中应用于球体图像的深度学习模型,我们使用使用Incucyte Live细胞分析系统和常规显微镜捕获的球体图像训练了该模型。使用验证和测试数据集对经过培训模型的性能评估显示出令人鼓舞的结果。结论Spheroscan允许轻松分析大量图像,并提供交互式可视化功能,以更深入地了解数据。我们的工具代表了球体图像分析的重大进步,并将促进科学研究中3D球体模型的广泛采用。可在https://github.com/funtionalurosology/spheroscan上获得有关Spheroscan的源代码和详细的Spheroscan教程。
方法:为了推断 AS 与各种糖尿病相关特征(包括 1 型糖尿病 (T1DM)、T2DM、血糖水平、空腹血糖、糖化血红蛋白和空腹胰岛素)之间的因果关系,我们采用了孟德尔随机化 (MR) 分析。我们从 IEU OpenGWAS 数据库、GWAS 目录和 FinnGen 数据库中获取了暴露和结果变量的 GWAS 汇总数据。为了综合 MR 分析的结果,我们应用了使用固定或随机效应模型的荟萃分析技术。为了识别和排除与结果表现出水平多效性的工具变异 (IV),我们使用了 MR-PRESSO 方法。使用 MR-Egger 方法以及 Q 和 I^2 检验进行敏感性分析,以确保我们的研究结果的稳健性。
人类的视野比在分布外情景下表现出的鲁棒性更高。它已经通过逐个合成的分析来猜想这种鲁棒性益处。我们的论文通过通过渲染和能力算法在神经特征上进行近似分析,以一致的方式制定三重视觉任务。在这项工作中,我们引入了神经丝线可变形的网格(NTDM),该网格涉及具有变形几何形状的OBJECT模型,该模型允许对摄像机参数和对象几何形状进行优化。可变形的网格被参数化为神经场,并被全表面神经纹理图所覆盖,该图被训练以具有空间歧视性。在推断过程中,我们使用可区分渲染来最大程度地重建目标特征映射,从而提取测试图像的特征图,然后对模型的3D姿势和形状参数进行优化。我们表明,在现实世界图像,甚至在挑战分布外情景(例如闭塞和主要转变)上进行评估时,我们的分析比传统的神经网络更强大。在经常性能测试测试时,我们的算法与标准算法具有竞争力。
Turner 等人的欧拉曲线变换 (ECT) 是嵌入单纯复形的完全不变量,易于进行统计分析。我们对 ECT 进行了推广,以提供同样方便的表示形式,用于加权单纯复形,例如在某些医学成像应用中自然出现的对象。我们利用 Ghrist 等人关于欧拉积分的工作来证明这个不变量——称为加权欧拉曲线变换 (WECT)——也是完整的。我们解释了如何将灰度图像中分割的感兴趣区域转换为加权单纯复形,然后转换为 WECT 表示。该 WECT 表示用于研究多形性胶质母细胞瘤脑肿瘤形状和纹理数据。我们表明,WECT 表示可根据定性形状和纹理特征有效地对肿瘤进行聚类,并且这种聚类与患者生存时间相关。
识别并最终消除吞吐量瓶颈是提高生产系统吞吐量和生产率的关键手段。然而,在现实世界中,消除吞吐量瓶颈是一项挑战。这是由于工厂动态环境复杂,数百台机器同时运行。学术研究人员试图开发工具来帮助识别和消除吞吐量瓶颈。从历史上看,研究工作一直集中在开发分析和离散事件模拟建模方法来识别生产系统中的吞吐量瓶颈。然而,随着工业数字化和人工智能 (AI) 的兴起,学术研究人员基于大量数字车间数据,探索了使用 AI 消除吞吐量瓶颈的不同方法。通过进行系统的文献综述,本文旨在介绍使用 AI 进行吞吐量瓶颈分析的最新研究成果。为了让学术界的 AI 解决方案更容易为实践者所接受,研究工作分为四类:(1)识别、(2)诊断、(3)预测和(4)开处方。这是受到现实世界吞吐量瓶颈管理实践的启发。识别和诊断类别侧重于分析历史吞吐量瓶颈,而预测和开处方侧重于分析未来的吞吐量瓶颈。本文还提供了未来的研究主题和实用建议,可能有助于进一步突破 AI 在吞吐量瓶颈分析中的理论和实际应用的界限。
发布日期:2024 年 11 月 1 日 喀布尔日期:2024 年 12 月 17 日 摘要:本研究深入研究了人工智能 (AI) 和大数据分析对企业管理的影响。人工智能和大数据分析使决策和战略规划过程更加有效、快速和数据驱动,从而为企业提供了显着的竞争优势。该研究强调了人工智能和大数据分析如何使企业能够更好地分析客户行为、预测市场趋势并提高运营效率。研究结果表明,数据驱动的决策过程为企业提供了战略优势,增强了客户满意度和品牌忠诚度。然而,该研究还解决了数据安全、隐私问题、高实施成本以及对训练有素的人员的需求等挑战,为如何有效管理这些问题提供了见解。此外,该研究评估了人工智能和大数据分析对企业管理的长期影响,强调了培养数据导向管理文化的必要性。建议未来的研究重点关注人工智能和大数据分析的不断发展的应用,并强调将这些技术整合到战略规划和决策过程中的重要性。这项研究揭示了人工智能和大数据分析在推动可持续增长和增强企业竞争优势方面可以发挥的重要作用。关键词:人工智能、大数据分析、决策、战略规划、企业管理 Özet:在分析过程中,YZ 和 YZ 的分析结果将根据其重要性进行评估。 YZ 已经完全分析,我已经制定了战略计划,并且已经完成了日常工作。恰里什马,YZ 已经完全分析了我的分析,并进行了分析,并进行了一些操作。保加利亚语的实际情况是,我的策略是通过使用策略来实现的。 Ancak、veri güvenliği、gizlilik、yüksek maliyetler 和 personel eğitimi gibi uygulama zorlukları da ele alımakta、bu zorlukların üstesinden gelmek için öneriler sunulmaktadır。 YZ 已将其彻底分析,并对其进行了彻底的分析。 Gelecek araştırmalar için YZ ve büyük veri analitiği uygulamalarının gelişen yönlerine odaklanılması önerilmekte ve işletmelerin stratejik planlama ve karar alma süreçlerine bu teknolojilerin entegrasyonunun önemine dikkat çekilmektedir。布恰利什玛,揭示了人工智能和大数据分析如何有效帮助企业实现可持续增长并提高竞争力。关键词:人工智能、大数据分析、决策、战略规划、企业管理
近年来非酒精性脂肪肝疾病(NAFLD)病例的迅速增加引起了人们的重大关注。准确地识别组织的改变对NAFLD的诊断至关重要,但是该任务在病理图像分析中带来了挑战,特别是与小规模的数据集有关。最近,从完整的微调转变为改编视觉模型的提示的范式转变为小规模数据分析提供了新的视角。然而,基于任务不足提示的现有提示方法主要是为了通用图像识别而开发的,该方法在为复杂病理学图像提供指导的指示方面缺乏。在本文中,我们提出了基于定量属性的提示(QAP),这是一种专门用于肝脏病理学分析的新提示方法。QAP基于两个定量属性,即基于K功能的空间属性和基于直方图的形态学属性,旨在对组织状态进行标准评估。此外,condi-
列B:子代理或组件。C列C-G:这些列包含有关每个帮助清单程序的预填充信息。栏H:确定负责监督该计划的高级政治任命的电子邮件。列I:指示该程序是否有任何未决的资金公告。 列J:指示此程序是否有预期的义务或资金支付,直到3/15/2025。 列K:指示此程序是否具有任何法定要求,要求在3/15/2025之前义务或支付资金。 列L:提供下一项义务或资金支出的估计日期。 列M-T:对每个问题(是/否)提供回答。 列U:提供有关程序或项目活动的任何其他相关信息。列I:指示该程序是否有任何未决的资金公告。列J:指示此程序是否有预期的义务或资金支付,直到3/15/2025。列K:指示此程序是否具有任何法定要求,要求在3/15/2025之前义务或支付资金。列L:提供下一项义务或资金支出的估计日期。 列M-T:对每个问题(是/否)提供回答。 列U:提供有关程序或项目活动的任何其他相关信息。列L:提供下一项义务或资金支出的估计日期。列M-T:对每个问题(是/否)提供回答。列U:提供有关程序或项目活动的任何其他相关信息。列U:提供有关程序或项目活动的任何其他相关信息。
空间幻象技术的最新进展已实现了分析组织形态,细胞组成和生物分子表达模式的新方法。这些进步正在促进数字病理新兴领域中新的计算工具和定量技术的开发。在这篇综述中,我们调查了使用数字化的组织病理学幻灯片和补充材料开发用于空间映射的OMIC数据分析的计算方法的当前趋势,并重点介绍了与泌尿生殖学肿瘤学研究有关的工具和应用。评论包含三个部分:1)组织幻灯片分析的图像处理方法的概述; 2)与空间解决的OMIC数据分析的机器学习集成; 3)讨论当前局限性和未来在临床决策过程中整合机器学习的方向。
● 模型训练:在训练模型之前,读取 (2) 生成的特征并进行预处理。例如,如果需要,对数据进行归一化,并根据可用数据量按比例拆分为训练、验证和测试数据集。模型训练完成后,将与 model.json 文件一起存储 (3),该文件包含有关训练模型的相关信息,例如每个隐藏层的神经元数量、隐藏层数量、使用的变量(后拟合残差、SNR 等)等。● 批量推理:模型训练完成后,可以通过加载保存的模型 (3) 并对新的 GNSS 数据执行推理过程将其部署到生产中。