在 Bloch 球面图中,我们可以根据恒等矩阵和泡利矩阵来展开单量子比特密度算子的系数。通过张量积推广到 n 个量子比特,密度算子可以用长度为 4 n 的实向量表示,在概念上类似于状态向量。在这里,我们研究这种方法以进行量子电路模拟,包括噪声处理。张量结构可实现计算高效的算法,用于应用电路门和执行少量子比特量子操作。针对变分电路优化,我们研究通过量子电路的“反向传播”和基于这种表示的梯度计算,并将我们的分析推广到林德布拉德方程,以建模密度算子的(非幺正)时间演化。
Compellor 运行时温度较高,因为该产品的设计可以有效地将大部分电路热量直接传导至外部表面。这使得热的内部组件(例如电压调节器)运行时温度远低于依赖直接对流冷却的情况。因此,如果机箱摸起来感觉异常热,您不必惊慌,因为机箱内部的温度永远不会比这高很多。但是,我们不建议将 Compellor 安装在严重限制设备周围空气通风的空间中,例如完全密封的机架外壳,除非您可以在设备的上方和下方提供空机架空间以方便冷却。建议使用带有百叶窗或风扇冷却的典型机架外壳,在这种情况下,您可以将 Compellor 安装在任何可用的机架空间中。
摘要 — 由于量子电路上的旋转分量,一些基于变分电路的量子神经网络可以被认为等同于经典的傅里叶网络。此外,它们还可用于预测连续函数的傅里叶系数。时间序列数据表示变量随时间的状态。由于一些时间序列数据也可以被视为连续函数,我们可以预期量子机器学习模型能够成功地对时间序列数据执行许多数据分析任务。因此,研究用于时间数据处理的新量子逻辑并分析量子计算机上数据的内在关系非常重要。在本文中,我们使用需要少量量子门的简单量子算子,通过 ARIMA 模型对经典数据预处理和预测进行量子模拟。然后,我们讨论了未来的方向以及可用于量子计算机上时间数据分析的一些工具/算法。
目前用于计算机显示器的 TTS 方法包括在每个具有音频功能的显示器上添加 TTS 电路,这会大大增加显示器的购买价格。解决此问题的一种经济高效的替代方案是引入独立的 TTS 适配器,该适配器包含一个内置扬声器,可连接到显示器/显示器中的 USB 端口。TTS 适配器将包含自己的专用扬声器,以便显示器扬声器(如果内置)可用于 PC 相关的音频功能。执行 TTS 所需的大部分电路位于适配器中,而不是给每个显示器带来负担。显示器将自动检测已连接的适配器,并通过弹出 OSD(屏幕显示)消息和菜单以用户自己的语言(当前选定的菜单语言)向用户显示 TTS 选项。TTS 适配器符合 USB 2.0 标准(低速),可以支持大多数 USB 显示器解决方案。
本期观点主要关注物理和化学领域中量子算法和蒙特卡罗方法之间的几个重叠部分。我们将分析将已建立的量子蒙特卡罗解决方案集成到量子算法中的挑战和可能性。这些包括精细的能量估计器、参数优化、实时和虚时动力学以及变分电路。相反,我们将回顾利用量子硬件加速统计经典模型中采样的新想法,并将其应用于物理、化学、优化和机器学习。本评论旨在让两个社区都能阅读,并旨在促进量子计算和蒙特卡罗方法交叉领域的进一步算法发展。本期观点中讨论的大多数作品都是在过去两年内出现的,表明人们对这一有前途的研究领域的兴趣正在迅速增长。
航空行政通信:交换航空行政信息所必需的通信。航空信标:一种在所有方位角上可见的航空地面灯,连续或间歇可见,用于指示地球表面的特定点。航空图:地球的一部分、其文化和地形的表示,专门用于满足空中导航的要求。航空数据:以适合通信、解释或处理的形式化方式表示航空事实、概念或指令。航空固定电路:航空固定服务 AFS 的一部分电路。航空固定服务:在指定固定点之间提供的电信服务,主要用于空中导航安全以及航空服务的正常、高效和经济运行。航空固定站:航空固定服务中的站。航空固定电信网络:作为航空固定服务的一部分,为具有相同或兼容通信特性的航空固定站之间交换消息和/或数字数据而提供的全球航空固定电路系统。
摘要 —我们提出了 SnCQA,这是一组硬件高效的等变分电路,分别针对置换对称性和空间格子对称性,量子比特数为 n。通过利用系统的置换对称性(例如许多量子多体和量子化学问题中常见的格子哈密顿量),我们的量子神经网络适用于解决存在置换对称性的机器学习问题,这可以大大节省计算成本。除了理论上的新颖性之外,我们发现我们的模拟在量子计算化学中学习基态的实际实例中表现良好,我们可以通过几十个参数实现与传统方法相当的性能。与其他传统变分量子电路(如纯硬件高效假设(pHEA))相比,我们表明 SnCQA 更具可扩展性、准确性和抗噪声能力(在 3 × 4 方格上的性能提高了 20 倍,在我们的案例中,在各种格子尺寸和关键标准(例如层数、参数和收敛时间)下节省了 200% - 1000% 的资源),这表明在近时间量子设备上进行实验可能是有利的。
在这项工作中,我们基于傅里叶分析开发了一种高效的函数和微分算子表示。利用这种表示,我们创建了一种变分混合量子算法,用于求解静态、薛定谔型、哈密顿偏微分方程 (PDE),使用空间高效的变分电路,包括问题的对称性以及全局和基于梯度的优化器。我们使用该算法通过计算三个 PDE(即一维量子谐振子和 transmon 和 flux 量子比特)中的基态来对表示技术的性能进行基准测试,研究它们在理想和近期量子计算机中的表现。利用这里开发的傅里叶方法,我们仅使用三到四个量子比特就获得了 10-4 –10-5 阶的低保真度,证明了量子计算机中信息的高度压缩。实际保真度受到实际计算机中成本函数评估的噪声和误差的限制,但也可以通过错误缓解技术来提高。
我们提出了一种减少电路中非 Clifford 量子门(特别是 T 门)数量的方法,这是有效实现容错量子计算的重要任务。此方法与大多数基准电路中无辅助 T 计数减少的先前方法相当或优于后者,在某些情况下可带来高达 50% 的改进。我们的方法首先将量子电路表示为 ZX 图,这是一种张量网络结构,可以根据 ZX 演算规则进行变换和简化。然后,我们扩展了最近的简化策略,添加了一个不同的成分,即相位小工具化,我们使用它通过 ZX 图传播非 Clifford 相位以找到非局部抵消。我们的程序可不加修改地扩展到任意相位角和变分电路的参数消除。最后,我们的优化是自检的,也就是说,我们提出的简化策略足够强大,可以独立验证输入电路和优化输出电路的相等性。我们已经在开源库 P y ZX 中实现了本文的例程。
摘要 — 本教程提供了引人入胜的量子机器学习 (QML) 领域的实践介绍。从量子信息科学 (QIS) 的基础开始——包括量子比特、单量子比特门和多量子比特门、测量和纠缠等基本元素——课程迅速进展到基础 QML 概念。参与者将探索参数化或变分电路、数据编码或嵌入技术以及量子电路设计原理。深入研究后,与会者将研究各种 QML 模型,包括量子支持向量机 (QSVM)、量子前馈神经网络 (QNN) 和量子卷积神经网络 (QCNN)。本教程突破界限,深入研究前沿 QML 模型,例如量子循环神经网络 (QRNN) 和量子强化学习 (QRL),以及量子联合机器学习等隐私保护技术,并通过具体的编程示例提供支持。在整个教程中,所有主题和概念都通过在量子计算机模拟器上执行的实际演示变得生动有趣。课程内容专为新手设计,适合那些渴望踏上 QML 之旅的人。与会者还将获得有关进一步阅读材料的指导,以及课程结束后可以探索的软件包和框架。