摘要 —我们提出了 SnCQA,这是一组硬件高效的等变分电路,分别针对置换对称性和空间格子对称性,量子比特数为 n。通过利用系统的置换对称性(例如许多量子多体和量子化学问题中常见的格子哈密顿量),我们的量子神经网络适用于解决存在置换对称性的机器学习问题,这可以大大节省计算成本。除了理论上的新颖性之外,我们发现我们的模拟在量子计算化学中学习基态的实际实例中表现良好,我们可以通过几十个参数实现与传统方法相当的性能。与其他传统变分量子电路(如纯硬件高效假设(pHEA))相比,我们表明 SnCQA 更具可扩展性、准确性和抗噪声能力(在 3 × 4 方格上的性能提高了 20 倍,在我们的案例中,在各种格子尺寸和关键标准(例如层数、参数和收敛时间)下节省了 200% - 1000% 的资源),这表明在近时间量子设备上进行实验可能是有利的。
主要关键词