为量子机器学习 (QML) 设计高性能、抗噪声的电路具有挑战性 — — 设计空间随着电路规模呈指数级增长,并且 QML 电路设计几乎没有得到良好支持的指导原则。尽管最近的量子电路搜索 (QCS) 方法试图搜索高性能且抗硬件噪声的 QML 电路,但它们直接采用经典神经架构搜索 (NAS) 的设计,而这些设计与量子硬件的独特约束不一致,导致搜索开销高昂和性能瓶颈严重。我们提出了一种新颖的资源高效、噪声引导的 QCS 框架 Élivágar。Élivágar 在 QCS 的所有三个主要方面 — — 搜索空间、搜索算法和候选评估策略 — — 进行了创新,以解决当前受经典启发的 QCS 方法中的设计缺陷。Élivágar 通过噪声和设备拓扑感知的候选生成实现了硬件效率,并避免了昂贵的电路映射协同搜索。通过引入两个计算成本低廉的预测器,即 Clifford 噪声弹性和表示容量,Élivágar 将噪声鲁棒性和性能评估分离,从而能够尽早拒绝低保真度电路并降低电路评估成本。由于其资源效率,Élivágar 可以进一步搜索数据嵌入,从而显著提高性能。根据对 12 个真实量子设备和 9 个 QML 应用程序对 Élivágar 的全面评估,与最先进的 QCS 方法相比,Élivágar 的准确率提高了 5.3%,速度提高了 271 倍。
主要关键词