为了使量子计算尽可能高效地完成,优化底层量子电路中使用的门数量非常重要。在本文中,我们发现许多近似通用量子电路的门优化问题都是 NP 难的。具体来说,我们通过将问题简化为布尔可满足性,证明了优化 Clifford+T 电路中的 T 计数或 T 深度(它们是执行容错量子计算的计算成本的重要指标)是 NP 难的。通过类似的论证,我们证明了优化 Clifford+T 电路中的 CNOT 门或 Hadamard 门的数量也是 NP 难的。同样改变相同的论证,我们还确定了优化可逆经典电路中 Toffoli 门数量的难度。我们找到了 NP NQP 的 T 计数和 Toffoli 计数问题的上限。最后,我们还证明,对于任何非 Clifford 门 G,在 Clifford+ G 门集上优化 G 计数是 NP 难题,其中我们只需要在运算符范数中的某个小距离内匹配目标单元。