Loading...
机构名称:
¥ 3.0

由随机统一门组成和受局部测量的量子电路已显示出通过测量速率调整的相变,从具有体积法则纠缠到区域法律状态的状态。从更广泛的角度来看,这些电路在其输出时产生了新型的量子多体状态的合奏。在本文中,我们表征了这个合奏并将可以确定为稳态状态的阶段进行分类。对称性起着非标准作用,因为施加在电路元素上的物理对称性并不能自身决定可能的阶段。相反,它是由与此合奏相关联的动态对称性扩展的,形成了放大的对称性。因此,我们预测没有平衡对应的阶段,仅物理电路对称性就无法支持。我们举下以下示例。首先,我们将操作的电路的阶段分类为Z 2对称性。用数值模拟证实的一个引人注目的预测是在一个维度中存在独特的体积阶段,尽管如此,它仍然支持真正的远程顺序。我们还认为,由于扩大的对称性,该系统原则上可以支持拓扑区域阶段,该相位受电路对称性和动态置换对称性的组合保护。第二,我们考虑只能保留费米亚奇偶校验的高斯费米子电路。在这里,扩大的对称性在中等测量率和kosterlitz-无thouththouththouththouththouth thouththouththythouththouthththouththythouthty的过渡中产生了U(1)临界阶段。我们就编码量子信息的能力来评论不同阶段的解释。我们讨论了与爱德华兹和安德森开创的自旋眼镜理论以及源于电路集合的量子性质的关键差异。

对称性富含量子电路的阶段

对称性富含量子电路的阶段PDF文件第1页

对称性富含量子电路的阶段PDF文件第2页

对称性富含量子电路的阶段PDF文件第3页

对称性富含量子电路的阶段PDF文件第4页

对称性富含量子电路的阶段PDF文件第5页