摘要我们开发了一种对称性区分性的资源理论,其基本对象是基本量子信息源,即以给定的先前概率发射两个可能的量子状态之一的来源。这样的源可以用复合系统XA的经典量词表示,与两个量子状态的集合相对应,而X是经典的和一个量子。我们研究了两种不同类别的自由操作的资源理论:(i)CPTP A,由仅作用于A的量子通道组成,以及(ii)作用于XA的有条件的双随机图。我们介绍了基本来源的对称区分性的概念,并证明它在这两种自由操作中都是单调的。我们研究了一声和渐近方案的蒸馏和对称性区分性的稀释任务。我们证明,在这两种自由操作下,在渐近制度中,将一个基本来源转换为另一个基本来源的最佳速率等于其量子Chernoff分歧的比率。这为量子Chernoff的分歧提供了新的操作解释。在对称区分性稀释的背景下,我们还获得了汤普森度量的有趣的操作解释。
主要关键词