新兴的量子机器学习领域 [ 1 ] 有望利用量子计算技术提高机器学习算法的准确性和速度。尽管量子机器学习有望在化学、物理学、材料科学和药理学中某些类型的问题上发挥作用 [ 2 ],但它是否适用于更传统的用例仍不确定 [ 3 ]。值得注意的是,可用的量子机器学习算法通常需要经过调整才能在“NISQ”设备 [ 4 ] 上运行,这些设备是当前的噪声量子计算机,没有纠错,并且具有适中的量子比特数和电路深度能力。在量子机器学习场景中,经典神经网络的量子对应物——量子神经网络 [ 5 ] 已经成为解决量子领域有监督和无监督学习任务的事实标准模型。虽然量子神经网络引起了广泛的兴趣,但它们目前也存在一些问题。第一个是贫瘠高原 [ 6 ],其特点是随着系统规模的增加,损失梯度的方差呈指数快速衰减。这个问题可能会因各种因素而加剧,比如量子电路表达能力过强 [ 7 ]。为了解决这个问题,需要精心设计量子神经网络 [ 8 ],并结合可表达性控制技术,如投影 [ 9 ] 和带宽控制 [ 10 ]。第二个问题,也是本文要解决的问题,涉及运行量子神经网络所需的资源量(总量子比特数有限——目前最多一百多个——以及当前量子设备上操作的低保真度严重限制了量子神经网络在输入维度和层数方面的大小)。为了解决后一个问题,我们建议采用 NISQ 适当的集成学习实现 [11],这是经典机器学习中广泛使用的技术,用于通过使用多个弱组件构建更强的分类器来调整特定机器学习机制的偏差和方差,从而使整个集成系统的表现优于最好的单个分类器。集成系统的有效性已在经验和理论上得到广泛证明 [12],尽管
主要关键词