混沌和许多研究该领域的思想已经渗透到大量科学领域,特别是那些依赖数学的领域。希望这能说明这些思想对化学和物理等领域的影响有多么深刻和强大。自然界似乎太复杂了,不可能在所有层面上都一直保持线性。引用爱因斯坦的话来说,自然界的确切定律不可能是线性的,也不可能从线性中推导出来。量子力学在形式上是线性的,被认为是理解自然界的基础系统[1-3]。这些看似相互矛盾的观点促使人们问量子力学是否也能涵盖非线性现象。这个问题与经典非线性现象的研究有关[4,5]。这让人们想知道,如果经典版本是混沌的,量子系统的行为会怎样。要理解量子力学中的混沌,需要对量子理论的基本结构进行更严格的表述[6,7]。要做到这一点,需要制定量子-经典对应关系,而目前,这种表述还缺乏。在经典力学中,如果存在一组 N 个运动常数 F ifg 并且它们对合,则具有 N 个自由度的哈密顿系统被定义为可积的,因此泊松括号满足 F i ;F j = 0,其中 i, j = 1,...,N。当系统可积时,运动被限制在 2 N 维相空间中不变的 N 环面上,因此是规则的。如果系统受到小的不可积项的扰动,则 Kolmogorov-Arnold-Moser (KAM) 定理指出其运动可能仍然限制在 N 环面上,但会发生变形。当此类扰动增加到某些环面被破坏的程度时,就会出现混沌,它们的行为用正的 Lyapunov 指数表示。研究量子混沌的尝试主要集中在经典不可积系统的量化上。由于前者原则上只是后者的极限情况,而且大多数现实量子系统没有经典对应物,因此后一种方法更一般、更自然。经典极限最常用的方法是使用埃伦费斯特定理,下面给出了三种研究经典极限的常用方法。薛定谔方法是开发一个波包,其时间演化遵循经典轨迹,因此坐标和动量期望值的时间演化不仅可以求解哈密顿方程,还可以求解薛定谔方程。狄拉克的方法是构造一个量子泊松括号,使经典力学和量子力学的基本结构一一对应。第三种方法是费曼路径积分形式,它通过对给定的初始和最终状态积分所有可能的路径,用经典概念来表达量子力学。可以根据量子力学的公理结构来回顾这个问题,量子动力学自由度的定义如下
主要关键词