Loading...
机构名称:
¥ 1.0

引言 — 对称性是自然界的一个重要方面,在物理学中起着基础性的作用 [1,2]。诺特定理指出,汉密尔顿量的对称性与相关物理系统中的守恒量相对应 [3]。汉密尔顿量的对称性表明存在超选择规则 [4,5]。在量子计算和信息领域,对称性可以指示资源的存在或缺乏 [6],并且它有助于提高变分量子算法的性能 [7-10]。通过消除与守恒量相关的自由度,对称性的识别可以简化计算——这是诺特定理的核心。这使得对称性在物理学中非常有用。量子计算是一个相当年轻的研究领域。量子计算机最初作为图灵机的量子力学模型 [ 11 ] 被提出,其魅力在于有可能超越经典计算机。量子计算机最明显的优势在于其计算背后固有的物理原理,包括叠加和纠缠等非经典特性。随着希尔伯特空间规模的扩大,量子系统的经典模拟很快变得难以处理,需要指数级增长的比特来探索多个量子比特自然占据的状态空间。直观地说,这些计算机的量子力学性质允许以直截了当的方式模拟量子系统(参见 [ 12 ] 及其参考文献)。一个相关的例子是哈密顿模拟 [ 13 ],它引起了该领域的浓厚兴趣 [ 14 – 17 ]。已经做了大量工作来理解如何在量子硬件上模拟这些动态,以便有效地实现它们;然而,据我们所知,目前还没有可以在量子计算机上测试汉密尔顿对称性的算法,尽管以这种方式模拟汉密尔顿量和识别汉密尔顿量的对称性都被认为是至关重要的。在本文中,我们给出了量子算法来测试汉密尔顿量演化是否关于离散有限群的作用对称。该性质通常被称为演化的协方差 [18]。如果演化是对称的,那么汉密尔顿量本身也是对称的,因此我们的算法可以测试汉密尔顿对称性。此外,我们表明,对于具有可有效实现的幺正演化的汉密尔顿量,我们可以在量子计算机上有效地执行我们的第一个测试 [17]。这里的“有效”是指在 100 秒内完成计算所需的时间。

测试哈密顿对称性的量子算法

测试哈密顿对称性的量子算法PDF文件第1页

测试哈密顿对称性的量子算法PDF文件第2页

测试哈密顿对称性的量子算法PDF文件第3页

测试哈密顿对称性的量子算法PDF文件第4页

测试哈密顿对称性的量子算法PDF文件第5页