Loading...
机构名称:
¥ 1.0

量子计算硬件的发展面临着这样的挑战:当今的量子处理器由 50-100 个量子比特组成,其运行范围已经超出了经典计算机的量子模拟范围。在本文中,我们证明,模拟经典极限可以成为一种有效的诊断工具,用于诊断量子信息硬件对混沌不稳定性的影响,从而有可能缓解这一问题。作为我们方法的试验台,我们考虑使用 transmon 量子比特处理器,这是一个计算平台,其中大量非线性量子振荡器的耦合可能会引发不稳定的混沌共振。我们发现,在具有 O(10)个 transmon 的系统中,经典和量子模拟会导致相似的稳定性指标(经典 Lyapunov 指数与量子波函数参与率)。然而,经典模拟的一大优势是它可以应用于包含多达数千个量子比特的大型系统。我们通过模拟所有当前的 IBM transmon 芯片(包括 Osprey 一代的 433 量子比特处理器以及具有 1121 个量子比特的设备(Condor 一代))展示了此经典工具箱的实用性。对于实际的系统参数,我们发现 Lyapunov 指数随系统规模而系统性地增加,这表明更大的布局需要在信息保护方面付出更多努力。

量子计算机中的经典混沌

量子计算机中的经典混沌PDF文件第1页

量子计算机中的经典混沌PDF文件第2页

量子计算机中的经典混沌PDF文件第3页

量子计算机中的经典混沌PDF文件第4页

量子计算机中的经典混沌PDF文件第5页

相关文件推荐

2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2024 年
¥1.0