经典学习理论中的一个重要研究方向是使用复杂性度量来表征函数类的表达能力。这种复杂性界限反过来又可用于限制学习所需的训练数据的大小。其中最突出的是 Vapnik 和 Chervonenkis (1971) 引入的 Vapnik-Chervonenkis (VC) 维度。其他众所周知的度量包括 Pollard (1984) 提出的伪维度、Alon 等人 (1997) 提出的脂肪粉碎维度、Rademacher 复杂性(参见 Bartlett 和 Mendelson 2002),以及更普遍的度量空间中的覆盖数字。表征对象表达能力的目标也以不同的形式出现在量子信息中。一个众所周知的例子是量子态断层扫描。Aaronson (2007) 将状态断层扫描的变体与经典学习任务相关联,其脂肪粉碎维度可以使用特定的函数类来限制
主要关键词