Biocon认可,尊重和促进劳动力多样性,在我们的系统上创造平等,促进和推进一种包容和归属的文化。该政策是由Biocon行为准则的一部分,它吸收了归属和支持不同背景,信念,能力和经验的精神,在这个环境中,每个人都感到有价值并共同努力,以实现有意义的组织成果。我们的多样性,公平,包容和归属(DEIB)政策阐明了Biocon将在整个组织中增强DEIB的原则和要求。该政策适用于我们所有实践。它是指我们的工作方式,包括招聘和选择过程,薪酬和福利实践,员工培训,职业发展和晋升,转移,员工参与计划以及分离过程。我们对多样化和包容的工作场所的承诺来自我们的价值观,这是我们行为准则的基础。我们的组织致力于创建一个有利于歧视行为的工作环境,这些行为可以被视为骚扰,强制性或破坏性。
图 2 LDMS 预浓缩/分离过程机理以及 LDMS-CE-TOF/MS 和 TQ/MS 的分析结果。 (a) 通过扫描和 AFMC 对样品溶液中的 DXd 进行预浓缩。 由于双堆积机制,DXd 被精确聚焦并与生物基质分离。 (b) 普通 CE-TQ/MS(未经任何预浓缩,1 μ M DXd)和 LDMS-CE-TQ/MS(1 nM)的提取离子电泳图;灵敏度提高了 1000 倍。 (c) 对与小鼠肝匀浆混合的 10 nM DXd 和 10 nM MMAE 进行 LDMS-CE-TOF/MS 分析。 DXd 和 MMAE 成功聚焦并与代谢物分离。 (d) LDMS-CE-TQ/MS 分析后的峰面积校准曲线。 R 2 超过 0.999,LOQ 为 420 fM(420 zmol,S/N = 10)。(e)2 pM DXd 与 100 pM DXd- d 5 和小鼠肝匀浆混合的 LDMS-CE-TQ/MS 分析。成功检测到 DXd,峰面积 RSD 为 7.1%,定量准确度为 110%。
摘要 服装行业的收入创造与材料消耗是同义词。因此,本研究分析了坦桑尼亚服装行业的材料消耗和成本降低技术。该研究在服装裁剪过程中采用了定量(实验)和定性方法(文件审查和观察技术)。十次测试的材料消耗实验结果显示,平均效率为 78.67%,浪费的片料为 19.2%,未被注意到的浪费为 2.03%。减少材料浪费的基本考虑因素包括:数字化面料裁剪过程;为工人提供培训;在裁剪室部署适当的实践(例如图案工程和图案准确性);考虑采购面料的质量和面料效率与不同人体形状和比例的关系;考虑分离过程,而不是延长面料、分割实质性组件、轻微减少喇叭口和接缝位移。该研究表明,服装企业可以将其实际材料消耗的基准定为其服装制造总成本的约 50-70%。关键词:材料浪费、服装行业、布料损失、降低成本技术、中小型企业。简介
Joe Curcio 是 Bechtel Parsons Blue Grass 团队的项目经理。他的职责包括领导合资系统承包商团队,负责关闭 Blue Grass 化学药剂销毁试验工厂 (BGCAPP),包括其正在进行的静态爆炸室操作以及主工厂的净化、退役和拆除工作。他从 2019 年起担任 BGCAPP 的副项目经理,直到 2024 年被选为项目经理。在加入 BGCAPP 之前,Curcio 曾在核领域的高危设施工作。他的核经验包括南卡罗来纳州萨凡纳河、华盛顿州汉福德废物处理和固定化工厂、华盛顿州汉福德华盛顿关闭、纽约分离过程恢复单元和纽约西谷示范项目。除了国防部项目外,Curcio 还拥有超过 28 年的项目管理和运营经验,曾在能源部、国家核安全局和环境管理组织负责大型核武器、化学武器和资本项目。他是一名认证项目经理,在完成海军核动力计划、在美国海军服役并获得霍顿大学理学学士学位后,于 1994 年开始从事核运营工作。
序号课程代码 课程名称 LTP 课程类型 1 FMC201 胶体与界面现象 3-0-0 理论 2 FMC202 传热与传质 3-0-0 理论 3 FMC203 煤与矿物的物理分离过程 3-0-0 理论 4 FMC204 电化学与腐蚀 3-0-0 理论 5 FMC205 热力学与动力学 3-0-0 理论 6 FMC206 相变与热处理 3-0-0 理论 7 FMC207 煤与矿物的细颗粒处理 3-0-0 理论 8 FMC251 颗粒技术实验室 0-0-2 实践 9 FMC252 物理分离过程实验室 0-0-2 实践 10 FMC253 细颗粒处理实验室 0-0-2 实践 11 FMC254 燃料技术简介实验室0-0-2 实践 12 FMC301 煤炭与矿物加工设备选择 3-0-0 理论 13 FMC302 萃取冶金学 3-0-0 理论 14 FMC303 机械冶金学 3-0-0 理论 15 FMC304 煤炭与矿物加工厂设计 3-0-0 理论 16 FMC305 煤炭与矿物加工厂设计实验室 0-0-2 实践 17 FMC306 煤炭与矿物加工设备选择实验室 0-0-2 实践 18 FMC351 萃取冶金学实验室 0-0-3 实践 19 FMC352 热处理与机械冶金学实验室 0-0-3 实践 20 FMC401 项目 - I 0-0-0 (6) 非接触式 21 FMC402 项目 - II 0-0-0 (6) 非接触式22 FMC501 煤炭与矿物加工 3-0-0 理论 23 FMC502 传输现象 3-0-0 理论 24 FMC503 数值方法与计算机应用 3-0-0 理论 25 FMC504 萃取冶金中的单元操作 3-0-0 理论 26 FMC506 燃料技术 3-0-0 理论 27 FMC509 先进材料与应用 3-0-0 理论 28 FMC510 矿物与冶金过程的数学建模 3-0-0 理论 29 FMC511 研究方法 3-0-0 理论 30 FMC512 材料特性 3-0-0 理论 31 FMC513 先进工程材料 3-0-0 理论 32 FMC551 煤炭与矿物加工实验室 0-0-3 实践 33 FMC552 工艺冶金实验室0-0-2 实践 34 FMC553 燃料技术实验室 0-0-2 实践 35 FMC556 材料特性实验室 0-0-3 实践 36 FMC597 论文 0-0-0 (36) 非接触式 37 FMC598 论文 0-0-0 (18) 非接触式 38 FMC599 论文 0-0-0 (S/X) 旁听 39 FMS401 实习 0-0-0 (S/X) 旁听 40 FMS391 工业参观 0-0-0 (S/X) 旁听
总共有 8 年以上的经验,包括废水处理部门、维护、质量、过程建模和模拟以及教学。其中,在废水处理部门工作了 07 个月,在 CDAC Trivandram 的 MoA 项目下从事建模和模拟工作了 05 个月,在学院 (PCE、SVCE、NITC、NITW 和 NITT) 担任教学人员 7 年。接触过使用盐酸和硫酸处理金属电镀产生的强酸性废水的工作,以及中和池、沉淀池、砂滤器、好氧消化器和泵的操作和设计。具备丰富的知识和使用各种化学工程软件平台的能力,包括 Hysys、Aspen plus 和 MATLAB/Simulink。在行业和学术领域拥有丰富的研究经验,研究成果发表在国际和国家期刊/会议上。精通多变量过程控制技术的建模、模拟、设计和实施。能够分析数据并设计合适的控制策略。处理的主题包括过程仪表动力学和控制、过程仪表、过程强化、化学过程系统、过程流程图、生物医学仪表、传输现象、化学过程计算、传热操作、单元操作、食品技术、化学技术、环境科学与工程、化学工业中的能源管理、污染控制的进展和现代分离过程。
粮食生产的快速工业化已经显着影响了各个部门产生的废水的质量和数量。由于其废水废水引起的环境问题引起了环境问题的一个这样的行业是食品行业,尤其是酱油生产行业。酱油是许多亚洲美食中的主食调味品,其生产涉及复杂的发酵过程,通常导致废水高度颜色,化学化,化学复杂且充满了有机污染物。浪费酱油是酱油制造的副产品,以其高化的化学氧需求(鳕鱼),高水平的有机化合物和浓烈的色彩而闻名,所有这些都会有助于环境污染,如果不正确地管理以应对处理浪费酱油的兴趣和越来越多的兴趣,则对先进的氧化物进行了越来越多的兴趣,并且利用了先进的氧化能力,即利用先进的水平(一定的水)。 (NF),以提高废水质量。AOP包括诸如臭氧化,紫外线(UV)轻处理和芬顿试剂之类的过程,在分解复杂的有机污染物,减少鳕鱼和脱色废水方面非常有效。另一方面,纳米过滤是一种基于膜的分离过程,能够从水中去除溶解的盐,有机分子和颗粒物,使其在废水处理的背景下成为有价值的技术[1]。
摘要由于很快就会在土地填充中大量锂离子电池(LIBS),因此它们的回收对于减少潜在的环境问题并涵盖锂升高的需求至关重要。因此,回收液体已成为一个热门的研究主题。尽管我们对回收自由液化的理解中的基本发展已经达到了一定程度的理解,但在某种程度上,完全优化的流量图设计仍然是制造工厂的内部知识。预处理(物理分离),作为第一步,毫无疑问会影响用过的LIB的整个回收过程的性能。然而,令人惊讶的是,根据已发表的报告,针对用于回收的用户的物理分离过程的每个步骤的调查都没有提供任何细节。为了解决这些问题,这项工作分析了安全回收LIB所涉及的所有可能的预处理过程。对这些调查的详细评估表明,几个关键点没有通过原始和审查的回收LIB的研究来考虑或报告。过程优化,各种预处理步骤的冶金响应,不同预处理方法的粒度限制,磁性,特异性重力以及阴极和阳极材料的表面特性以及其他几个基本变量未通过各种研究来考虑或报告。解决这些差距将为回收Libs流量的设计和操作铺平道路。
摘要:我们提出了一种方法,将其转换为2D蓝图转换为3D模型从原始单视图像中的可变形对象类别,完全没有外部监督。我们的方法利用了一个自动编码器框架,该框架将每个输入图像分解为四个基本组件:深度,颜色校正,观点和照明。没有明确标签就可以实现此分解。我们利用转换对象外观的事实,基础结构通常保持对称,可用于指导分离过程。要处理可能表现出部分对称性的对象,我们引入了一个学习的对称概率图,该图被整合到模型中,并与其他组件一起端到端学习。我们的方法能够从单视图像中准确恢复各种可变形物体的3D形状,例如人的脸,猫的脸和汽车,而无需依赖任何监督或先前的形状模型。在实验评估中,我们证明了我们的无监督方法显着优于依赖2D图像对应关系的有监督方法,从而在3D形状重建方面达到了卓越的准确性。这项工作为无监督的3D对象学习提供了有希望的步骤,并在计算机视觉和图形中使用了潜在的应用。关键字:OPENCV,深度处理,MIDAS,图像处理,Pytorch。
更深入地了解色谱吸附剂的纳米级和中观级结构以及介质中蛋白质的分布,对于从机制上理解使用这些材料的分离过程至关重要。使用传统技术来表征这种规模的介质结构和其中的蛋白质吸附具有挑战性。在本研究中,我们提出了一种新颖的树脂表征技术,该技术能够在典型的色谱条件下原位测量树脂内吸附蛋白质层的结构。设计并制造了一个石英流通池,用于小角度中子散射 (SANS),以便在单克隆抗体吸附过程中测量二氧化硅基蛋白质 A 色谱树脂的纳米级到中观级结构。我们能够使用对比匹配方法实时检查不同蛋白质负载和洗涤缓冲液下树脂的孔间(˜ 133 nm)和孔径(˜ 63 nm)相关性以及平面吸附抗体分子(˜ 4.2 nm)相关性。当将 0.03 M 磷酸钠与 1 M 尿素和 10% 异丙醇缓冲液(pH 8)作为洗涤缓冲液引入系统时,它会破坏系统的秩序,导致吸附抗体部分展开,这可以通过平面蛋白质相关性的丧失来证明。该方法为研究色谱树脂内的纳米级结构和配体固定提供了新方法;也许最重要的是了解在复制色谱柱的样品环境中,在不同流动相条件下吸附蛋白质在介质中的原位行为。