资金信息 本研究由 Isala 科学与创新基金(荷兰兹沃勒 Isala 医院)、Dr. CJ Vaillant 基金(荷兰阿尔梅勒 Landelijke Vereniging van Crematoria)和 Nutricia Specialized Nutrition(荷兰祖特梅尔 Nutricia Nederland BV)资助。赞助方未参与研究的设计和实施、数据的收集、管理、分析和解释,也未参与手稿的准备、审查和批准,也未参与决定是否将手稿提交出版。
摘要背景:从磁共振图像(MRI)中分割脑肿瘤及其组成区域对于规划诊断和治疗非常重要。在临床实践中,经验丰富的放射科医生通常使用多模态 MRI 来描绘肿瘤区域。但这种手动分割容易出现重现性差且耗时。此外,常规临床扫描通常分辨率较低。为了克服这些限制,需要一种基于计算机视觉的自动精确分割算法。方法:我们研究了三种广泛使用的分割方法的性能,即区域增长、模糊 C 均值和深度神经网络 (deepmedic)。我们通过随机选择 48 名患者数据(高级别,n = 24 和低级别,n = 24)在 BRATS 2018 数据集上以及在我们的常规临床 MRI 脑肿瘤数据集(高级别,n = 15 和低级别,n = 28)上评估了这些算法。我们使用骰子相似系数、豪斯多夫距离和体积测量来测量它们的性能。结果:与模糊 C 均值 (FCM) 和 deepmedic 网络相比,区域增长法表现非常差。对于 BRATS 和临床数据集,FCM 和 deepmedic 算法的 Dice 相似系数得分彼此接近。这两种方法的准确率一般都低于 70%。结论:尽管 deepmedic 网络在 BRATS 脑肿瘤分割挑战中表现出非常高的准确率,但它必须针对低分辨率常规临床扫描进行定制训练。它还需要大量训练数据才能用作临床应用的独立算法。尽管如此,与区域增长或 FCM 相比,deepmedic 可能是脑肿瘤分割的更好算法。关键词:脑肿瘤、分割、深度神经网络、MRI
图 1:STitch3D 概览。a. 来自多个 ST 组织切片的原始数据和来自参考 scRNA-seq 数据集的细胞类型特异性基因表达谱作为 STitch3D 的输入。b. STitch3D 的预处理步骤包括对来自不同组织切片的斑点进行对齐以构建斑点的 3D 位置,以及构建全局 3D 图。STitch3D 的主模型结合这些结构来执行表示学习,用于 3D 空间域识别和 3D 细胞类型反卷积。c. STitch3D 输出 3D 空间区域识别结果和组织中不同细胞类型的 3D 空间分布估计。STitch3D 还支持多种下游分析,包括空间轨迹推断、低质量基因表达测量值的去噪、虚拟组织切片的生成以及具有 3D 空间表达模式的基因识别。d. STitch3D 对多个切片进行联合建模,并利用基于图注意的神经网络学习具有 3D 空间信息的斑点和细胞类型比例的潜在表示。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
5G-CLARITY 项目属于欧洲 5G-PPP 计划的第三阶段 [1],该计划正在研究私有 5G 网络概念应如何在 3GPP Release 16 [2] 之后演进。该项目在两大支柱上带来了创新:首先,将开发新颖的用户和控制平面组件,以提供集成 5G 新无线电 (5GNR)、WiFi 和光保真 (LiFi) 的私有 5G 网络,以增强 5GNR 在峰值数据速率、区域容量、低延迟和精确定位方面的功能。其次,管理推动器允许对异构接入网络进行切片,集成私有和公共网络,使用高级意图语言操作网络,并结合 ML 模型来支持网络功能的运行。5G-CLARITY 创新将应用于英国布里斯托尔博物馆的人机交互用例,以及西班牙巴塞罗那汽车工厂的两个工业 4.0 用例。
切片程序 • 使用不同的切片程序准备要打印的 3D 模型。这些是 Cura、PrusaSlicer、LycheeSlicer 和 ChiTuBox。 • 探索各种切片设置及其如何影响打印过程,例如层高、壁数、填充(密度、类型/图案)、曝光时间、打印方向、支撑结构(正常、树/有机)等。 • 理解并使用切片过程的步骤。 1. 将 3D 文件导入切片软件 2. 调整切片设置并定位 3D 模型 3. 通过将 3D 模型切片成层来生成刀具路径。 4. 预览切片层以确保准确性并识别任何潜在问题。 5. 以与 3D 打印机兼容的适当文件格式(例如 G 代码)导出切片模型。 6. 将切片文件传输到 3D 打印机进行打印。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权持有者此版本于 2024 年 1 月 8 日发布。;https://doi.org/10.1101/2024.01.06.24300926 doi:medRxiv 预印本
森林在地面碳循环中至关重要,并且对它们对持续气候变化的反应的了解对于确定未来的碳浮动和气候轨迹至关重要。在具有对比季节的区域,树木形成可以分配给日历年的离散年环,从而可以提取有关树木对环境的反应的宝贵信息。木材的解剖结构提供了有关树木对气候的反应和适应的高度分辨信息。定量木材解剖结构有助于通过使用木材微剖面的高分辨率图像在细胞水平上测量木材来检索这些信息。然而,尽管在识别细胞结构方面已经取得了很大的进步,但获得有意义的细胞信息仍然受图像上正确的年度树环界定的阻碍。这是一项耗时的任务,需要经验丰富的操作员手动界定环边界。基于像素值的自动分割的经典方法正在用能够区分结构的新方法代替,即使分界需要高水平的专业知识。尽管已使用神经网络进行木环的分割,但木制的木材图像,但阔叶物种染色的微观切片中细胞模式的复杂性需要自适应模型才能准确地完成此任务。我们在山毛榉核心染色的横截面微隔板图像上使用神经网络提出了自动树环边界划定。基于卷积神经网络的应用我们训练了一个UNETR,一个UNET的联合神经网络和视觉变压器的注意机制,以自动分段年度环边界。考虑到具有手动分割的差异以及数量木材解剖学分析目标的差异以及差异的后果。在大多数情况下(91.8%),自动分割匹配或改进了手动细分,即使将手动细分视为更好的情况,两种类别之间的船只分配率也相似。
自 20 世纪 80 年代以来,磁共振成像 (MRI) 就已用于研究发育中的胎儿大脑。然而,运动 (母亲和胎儿的) 一直是一个真正的挑战,限制了所获取图像的探索能力。在产前成像中,大脑的完整图像实际上是一堆 2D 切片。这些采集通常沿空间的三个轴进行,以便为放射科医生提供大脑的 3D“视觉”。切片的采集时间通常足够短 (少于 1 秒) 以“冻结”运动。因此,受试者的运动主要会引起几何失真伪影,即 2D 切片的堆叠不能直接反映大脑的 3D 几何形状。因此,有必要回顾性地估计运动以重建胎儿大脑的 3D 图像 [1]。胎儿数据重建的主要方法称为“切片到体积配准”的 SVR,该方法基于两个步骤:估计相对运动,然后融合数据 [2–4]。在产前成像的情况下,配准问题属于 2D-3D 类型,即我们必须估计切片和参考体积之间的运动。此参考体积也是我们想要重建的图像,因此是未知的。从对参考体积的首次估计,通过最小化当前切片和参考体积之间的对齐标准来估计每个切片的对齐。然后根据为每个切片估计的变换集重新计算后者。重建体积的质量在很大程度上取决于切片配准的质量。该过程以迭代方式重复,直到算法收敛。为了使这些方法对受试者的运动更具鲁棒性,已经开发了深度学习方法 [5,6]。然而,基于迭代重建的方法对于分析临床常规获取的大型图像数据库仍然不够稳健。因此,有必要检测出未对准的切片,以便不将它们包括在重建步骤中[7,8]或减少它们对重建的影响[9]。为了解决这个问题,一种解决方案是通过使用正交切片的交点并将它们的对应关系强加到 3D 交点 [10],将切片的运动校正与重建步骤完全分开。这种方法可以独立解决切片运动校正和 3D 体积重建的问题。在本文中,我们开发了一种使用机器学习方法来估计与未对准切片检测相关的切片运动的方法。所提出的方法称为 ROSI,即“基于正交切片交点的配准”。对合成和真实数据进行的评估表明,与 SVR 方法相比,所提出的方法更有吸引力。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权持有者此版本于 2024 年 1 月 9 日发布。;https://doi.org/10.1101/2024.01.06.24300926 doi:medRxiv 预印本