与环境相互作用的开放量子系统表现出由耗散和相干哈密顿量演化相结合描述的动力学。总之,这些效应由刘维尔超算子捕获。刘维尔(一般非厄米)的退化是异常点,当系统接近稳定状态时,它们与临界动力学有关。我们使用与工程环境耦合的超导传输电路来观察两种不同类型的刘维尔异常点,它们要么是由能量损失和退相干的相互作用引起的,要么纯粹是由于退相干引起的。通过实时动态调整刘维尔超算子,我们观察到非厄米性引起的手性状态转移。我们的研究从刘维尔异常点的角度激发了对开放量子系统动力学的新认识,使非厄米动力学能够应用于开放量子系统的理解和控制。
Cheraghian 等人 [ 21 – 23 ] 在零样本 3 维模型分类方 面提出了 3 维点云的零样本学习方法、缓解 3 维零样 本学习中枢纽点问题的方法和基于直推式零样本学 习的 3 维点云分类方法,并将它们封装进一个全新 的零样本 3 维点云方法 [ 24 ] 中。以上方法均是利用已 知类样本的点云表征及其词向量对未知类别进行分 类,开创了零样本 3 维模型分类方法。近年来, CLIP 在零样本图像分类上取得了良好的效果,因此有研 究者将 CLIP 应用到零样本 3 维模型分类方法中, Zhang 等人 [ 25 ] 提出了基于 CLIP 的 3 维点云理解 (Point cloud understanding by CLIP, PointCLIP) 模型, PointCLIP 首先将 3 维点云投影成多个深度图,然 后利用 CLIP 的预训练图像编码器提取深度图特 征,同时将类别名称通过 CLIP 预先训练的文本编 码器提取文本特征。但是 PointCLIP 的性能受到深 度图和图像之间的域差异以及深度分布的多样性限 制。为了解决这一问题,基于图像 - 深度图预训练 CLIP 的点云分类方法 (transfer CLIP to Point cloud classification with image-depth pre-training, CLIP2Point) [ 26 ] 将跨模态学习与模态内学习相结合 训练了一个深度图编码器。在分类时,冻结 CLIP 的图像编码器,使用深度图编码器提取深度图特 征,该方法缓解了深度图和图像间的模型差异。用 于 3 维理解的图像 - 文本 - 点云一致性表征学习方法 (learning Unified representation of Language, Im- age and Point cloud for 3D understanding, ULIP) [ 27 ] 构建了一个图像、文本和点云 3 种模态的 统一嵌入空间,该方法利用大规模图像 - 文本对预 训练的视觉语言模型,并将 3 维点云编码器的特征 空间与预先对齐的视觉 - 文本特征空间对齐,大幅 提高了 3 维模型的识别能力。与之相似的是,基于 提示文本微调的 3 维识别方法 (CLIP Goes 3D, CG3D) [ 28 ] 同样使用 3 元组形式确保同一类别的 3 维模 型特征和图像特征之间以及 3 维模型特征和文本特 征之间存在相似性,从而使点云编码器获得零样本 识别的能力。另外, PointCLIP V2 [ 29 ] 在 Point- CLIP 的基础之上,通过利用更先进的投影算法和 更详细的 3 维模型描述,显着提高了零样本 3 维模型 分类准确率。本文采用语义增强 CLIP 解决图像和文 本的语义鸿沟问题,通过在语义层面为图像和文本 提供更多相似的语义信息,使图像和文本对齐更具有 一致性,从而有效提高 3 维模型的零样本分类性能。 2.2 提示工程
Chungsik Yoo 博士目前是韩国成均馆大学 (SKKU) 的土木、建筑工程和景观建筑学教授。他是国际土工合成材料学会 (IGS) 主席。Yoo 教授还积极参与国际土力学和岩土工程学会 (ISSMGE),担任 TC204 副主席,该技术委员会是“软土地基地下施工”。他曾担任国际隧道和地下空间协会 (ITA) 执行委员会成员和工作组 2 的发起人。Yoo 教授分别于 1989 年和 1993 年获得宾夕法尼亚州立大学土木工程硕士和博士学位。在美国 Mueser Rutledge 咨询工程师公司担任岩土工程师后,他回到韩国,并于 1994 年加入成均馆大学担任助理教授。此后,Yoo 教授继续担任成均馆大学的教授,并于 2014 年至 2016 年担任土木与建筑工程学院的讲座教授,并于 2017 年至 2018 年担任工程学院副院长。Yoo 教授合作撰写了 400 多篇技术论文,包括岩土工程和土工合成材料工程领域的 SCI 期刊论文和会议论文,包括基于实验室测试、数值建模和现场测试的隧道施工。他是国际土工合成材料学会 (IGS) 颁发的 2010 年 IGS 奖的获得者。 Yoo 教授还获得了韩国土木工程学会、韩国岩土工程学会、韩国隧道和地下空间协会以及韩国土工合成材料学会颁发的众多奖项,包括 2014 年韩国科学技术协会颁发的最佳科学和工程论文奖。目前,他是《土工织物和土工膜》的主编和《隧道和地下空间技术》的副主编。他还是《土工合成材料国际》、《计算机与岩土工程》、《交通岩土工程》和《地下空间》的编委会成员。Yoo 教授在许多国际活动中就土工合成材料和隧道相关主题发表了许多主题演讲,其中包括 WTC 2020、ICTG 2020、ISRM 2015、Eurogeo 6、Geosynthetics Asia 2016、IS-Sao Paulo 2017、Tunnelling Asia 2017、GeoMEAST 2017、GeoPERU 2017 等。
第三部分:法案概述 摘要:第 35 号众议院法案 (HB35) 将修订《石油和天然气法》以及《空气质量控制法》,以保护公众免受“儿童健康保护区”内石油和天然气作业污染的影响,“儿童健康保护区”定义为“距离学校地产线 5,280 英尺的区域”。该法案规定暂停未达到空气质量标准或未提交所需报告和计划的油井或生产设施(包括任何靠近学校的油井或生产设施)。拥有井口或生产设施的运营商必须制定年度报告,如果位于儿童健康保护区内,还必须制定泄漏检测响应计划。该法案没有规定生效日期。除非指定更晚的日期,法律将在颁布它们的立法机关休会后 90 天生效。如果颁布,该法案将于 2025 年 6 月 20 日生效。财政影响 HB32 不包含拨款。对于因不遵守该法案规定而必须暂停运营的石油和天然气设施运营商,可能会产生重大但不确定的财政影响。该法案规定,法院、能源、矿产和自然资源部石油保护处 (OCD) 或石油保护委员会 (OCC) 将对不遵守该法案规定的运营商评估民事处罚。对于每次违规,这些罚款最高可达每天 3 万美元。OCC 或 OCD 评估的此类罚款不得超过 20 万美元,但此限制不适用于法院评估的罚款。重大问题 该法案将“学校”定义为“小学、中学、初中、初中或高中,或上述学校的任何组合,包括公立学校、州立或地方特许学校或学生亲自就读的私立学校,包括日托中心,以及与学校相关的公园、游乐场或体育或娱乐设施。” 运营商的年度报告将包括运营商油井或生产设施附近任何儿童健康保护区内的学校地图和清单。 孩子们大部分时间都在学校度过,学校附近油气井的空气污染物可能会给新墨西哥州带来严重的公共卫生问题。 儿童面临更高的空气污染物暴露风险,因为他们的呼吸道很小且仍在发育,他们比成年人呼吸更快,吸入的空气更多,而且他们身体对感染的天然防御能力仍在发展。 2021 年的一项研究调查了上游石油和天然气生产对环境空气污染物的影响,距离水井两到四公里范围内污染物浓度明显较高。作者认为污染物
摘要:过渡金属氧化物(TMOS)是可安全和快速充电的电池的有前途的阳极材料,但是它们的高工作电势限制了能量密度。在这里,我们制定了一种抑制无序岩盐(DRS)Li 3 V 2 O 5(LVO)阳极的工作潜力的策略,通过MG掺杂量约为10%至0.54 V。密度功能理论(DFT)计算将这种电压降低归因于li离子的位置能量增加,因为Mg掺杂,对LI迁移障碍的影响很小。mg-掺杂的LVO在1000个周期以上的95%以上,速率为5C。全细胞具有0.8 CO 0.8 CO 0.1 Mn 0.1 Mn 0.1 O 2阴极的预期,预期的能量密度和能量密度的增加,同时保留了5C的250个周期的能力的91%,以表明我们的发现在5C中显示出良好的良好的良好态度,该良好的良好的良好态度的良好的良好态度是良好的途径。增强的能量密度。l
由于环境条件多变,光伏 (PV) 系统参数始终是非线性的。在多种不确定性、干扰和时变随机条件的发生下,最大功率点跟踪 (MPPT) 很困难。因此,本研究提出了基于被动性的分数阶滑模控制器 (PBSMC),以检查和开发 PV 功率和直流电压误差跟踪的存储功能。提出了一种独特的分数阶滑模控制 (FOSMC) 框架的滑动面,并通过实施 Lyapunov 稳定性方法证明了其稳定性和有限时间收敛性。还在被动系统中添加了额外的滑模控制 (SMC) 输入,通过消除快速不确定性和干扰来提高控制器性能。因此,PBSMC 以及在不同操作条件下的全局一致控制效率是通过增强的系统阻尼和相当大的鲁棒性来实现的。所提技术的新颖之处在于基于黎曼刘维尔 (RL) 分数阶微积分的 FOSMC 框架的独特滑动曲面。结果表明,与分数阶比例积分微分 (FOPID) 控制器相比,所提控制技术可在可变辐照度条件下将 PV 输出功率的跟踪误差降低 81%。与基于被动性的控制 (PBC) 相比,该误差降低 39%,与基于被动性的 FOPID (EPBFOPID) 相比,该误差降低 28%。所提技术可使电网侧电压和电流的总谐波失真最小。在不同太阳辐照度下,PBSMC 中 PV 输出功率的跟踪时间为 0.025 秒,但 FOPID、PBC 和 EPBFOPID 未能完全收敛。同样,直流链路电压在 0.05 秒内跟踪了参考电压,但其余方法要么无法收敛,要么在相当长的时间后才收敛。在太阳辐射和温度变化期间,使用 PBSMC,光伏输出功率在 0.018 秒内收敛,但其余方法未能收敛或完全跟踪,与其他方法相比,由于 PBSMC,直流链路电压的跟踪误差最小。此外,光伏输出功率在 0.1 秒内收敛到参考功率
9。W。Wang,A。Hejasebazzi,J。Zheng和K. J. Liu,“建立一个更好的引导程序,RAWR将击败您家门的随机途径:重新审视的系统发育支持估计”,第24届分子生物学智能系统会议的过程(ISMB)智能系统(ISMB)和欧洲20号会议(ISMB)会议(ISMB)和计算中的第202个会议(ECB)会议论文发表于《生物信息学》,第1卷。37,问题补充1,第1页。 I111 – I119,2021,doi:10.1093/bioinformatics/btab263。接受率为18.6%。
肺动脉高压(pH)是一种进行性,极端恶性和高病态性肺血管疾病[1]。它的主要特征是肺血管耐药性(PVR)增加和肺部血管压力的持续增加,最终导致右心力衰竭甚至猝死[2]。pH可以定义为由各种原因(包括毛细血管前,毛细血管后和混合原因)引起的肺动脉压(PAP)升高[3]。pH的诊断标准为平均PAP(MPAP)≥25mmHg在REST时通过右心导管在海平面测量[3]。肺动脉高压(PAH),由左心脏病引起的pH,由呼吸道疾病和/或缺氧引起的pH值,由阻塞性肺动脉疾病引起的pH值以及由未知因子引起的pH值构成当前pH的临床分类[4]。
摘要 引言 食管鳞状细胞癌 (OSCC) 是世界各地 (包括中国) 最常见的恶性肿瘤之一。迄今为止,IV 期 OSCC 患者的标准治疗是全身化疗和姑息治疗,但预后不佳。然而,关于放射治疗在 IVa 期 OSCC 患者中针对原发肿瘤的作用尚未达成共识。因此,本研究旨在评估原发性放疗联合 S-1 和奈达铂 (NPD) 化疗对 IV 期 OSCC 患者的疗效。 方法与分析 本研究是一项多中心、开放标签、随机对照试验。总共 180 名符合条件的 IV 期 OSCC 患者将随机分为研究组(90 名患者)和对照组(90 名患者)。研究组患者将接受剂量为 50.4 Gy 的原发肿瘤放疗,联合 4-6 个周期的 S-1 和 NPD 化疗。对照组患者仅接受4-6个周期的S-1和NPD化疗。研究将测量主要和次要结果。统计分析两组在总生存期、无进展生存期和安全性方面的差异。所有结果将在治疗前、治疗后和随访后确定。本研究结果将为放射治疗在中国IV期OSCC患者中的作用提供证据,为晚期食管癌患者提供新的治疗选择。 伦理与传播 本研究已获郑州大学第一附属医院机构伦理委员会批准(批准文号:SS-2018-04)。 试验注册 本试验于2018年11月1日在中国临床试验注册中心(ChiCTR1800015765)注册;回顾性注册,http://www. chictr.org.cn/index.aspx。
了解嘈杂的中等规模量子(NISQ)设备的计算能力对于量子信息科学既具有基本和实际重要性。在这里,我们解决了一个问题,即错误误差量子计算机是否可以比古典计算机提供计算优势。特别是,我们在一个维度(或1d Noisy RCS)中研究嘈杂的随机回路采样,作为一个简单的模型,用于探索噪声效应对噪声量子设备的计算能力的影响。特别是,我们通过矩阵产品运算符(MPO)模拟了1D噪声随机量子电路的实时动力学,并通过使用度量标准来表征1D噪声量子系统的计算能力,我们称为MPO Entangrelemt熵。选择后一个度量标准是因为它决定了经典MPO模拟的成本。我们从数值上证明,对于我们考虑的两个QUITAT的错误率,存在一个特征性的系统大小,添加更多量子位并不会带来一维噪声系统的经典MPO模拟成本的指数增长。特别是,我们表明,在特征系统的大小上面,有一个最佳的电路深度,与系统大小无关,其中MPO倾斜度熵是最大化的。最重要的是,最大可实现的MPO纠缠熵是有限的