摘要 - 本文提供了一种开发t -wishart分布的协方差矩阵的分类方法,该方法概括了WishArt分布。与WishArt分布相比,它对于异常协方差矩阵更为强大,并且更灵活地对分布不匹配。在此矩阵变化分布的最新发展之后,提出的分类器是通过利用判别分析框架并提供原始决策规则来获得的。通过对实际数据的数值实验,我们的方法的实际兴趣得到了表明。更确切地说,所提出的分类器在两个标准的脑电图数据集上获得了最佳结果,而最佳最低距离(MDM)分类器相比。索引项 - EEG,协方差矩阵,t -wishart,Bayseian分类,判别分析,BCI。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
自我监督的表示学习(SSL)(Balesteriero等人,2023年)近年来已经成为表示学习的基石。诸如Openai剪辑之类的模型(Radford等人,2021)示例SSL方法如何产生适用于广泛下游任务的表达性表示。此范式依赖于配对的观测值(配对的视图或共享相同内容的方式)来提取有意义的特征。从广义上讲,SSL方法分为两类:歧视性和生成性(或基于重建)。歧视性SSL(Chen等人,2020年)旨在确保比随机采样观测值在潜在空间中更接近配对观测的表示。相反,基于重建的SSL(He等人,2022)涉及从其对中重建一个观察结果。在多视图设置中,数据增强技术(例如图像裁剪和颜色抖动)通常用于人为地创建单个单个观测值。在这些增强中,事实证明,图像裁剪特别有影响力,推动了视觉学习模型(例如Meta's Dino)(Caron等人,2021; Oquab等。,2023)和JEPA(Assran等人,2023)。最近的研究(Bizeul等人,2024)1表明,在图像域中,掩盖(概念上类似于裁剪),而不是单个图像像素可以生成图像对,从而促进基于重建的SSL中表达特征的学习。,2023)。在这个项目中,我们的目标是投资于将类似方法应用于歧视性SSL是否可以产生可比的好处,专门针对Dino,Jepa和Siglip(Zhai等人。
摘要:物理学的概念和定律一直是工程师克服人类挑战和问题的宝贵灵感来源。分类是此类问题在工程科学各个领域中起主要作用的重要例子。表明,歧视性分类器倾向于优于其生成性对应物,尤其是在有足够标记的训练数据的情况下。在本文中,我们使用最小潜在线提出了一种新的物理启发性分类方法。为此,我们首先考虑两组固定点电荷(作为两类数据)和它们之间的可移动分类器线。然后,由于两组点电荷,我们通过最小化分类器线上的总电位积分来找到分类器线的稳定位置。令人惊讶的是,将显示获得的分类器实际上是基于不确定性的分类器,可最大程度地减少分类器线的总不确定性。实验结果显示了所提出的方法的有效性。
扩散模型的出色实力促使其努力将其应用范围扩展到生成任务之外。然而,缺乏统一的AP批准来将扩散模型应用于具有不同语义颗粒性的视觉对任务的持续挑战。我们的目的是建立一个统一的视觉感知框架,利用生成模型和歧视模型之间的实质协同作用。在本文中,我们提出了一个简单而有效的框架,该框架构成了预先训练的稳定扩散(SD)模型,其中包含丰富的生成性先验,一个能够整合层次代表的头部(U-Head),并且能够整合层次代表,并提供了一个适应性的外观,并提供了不良的犯罪性犯罪性。全面研究揭示了苦艾酒的潜在特征,例如在不同的时间步骤和各种U-NET阶段隐藏在潜在变量中的感知的不同粒度。我们强调,将重量级或活体积的解码器纳入将扩散模型转换为较大的表示学习者没有任何信息。针对定制判别模型的广泛比较评估展示了我们方法对基于零的素描基于素描的图像检索(ZS-SBIR),少数射击分类和开放式播放量和开放式摄影(OV)SETANICE分割任务的效率。有希望的结果证明了扩散模型作为强大的学习者的潜力,并在提供信息丰富且健壮的视觉代码方面确立了重要的能力。
阿尔茨海默病 (AD) 是一种具有挑战性的神经退行性疾病,需要早期诊断和干预。这项研究利用机器学习 (ML) 和图论指标,这些指标源自静息态功能磁共振成像 (rs-fMRI) 数据来预测 AD。使用西南大学成人寿命数据集 (SALD,年龄 21-76 岁) 和开放获取系列成像研究 (OASIS,年龄 64-95 岁) 数据集(包含 112 名参与者),开发了各种 ML 模型用于 AD 预测。该研究确定了全面了解 AD 中的大脑网络拓扑和功能连接的关键特征。通过 5 倍交叉验证,所有模型都表现出显著的预测能力(准确率在 82-92% 范围内),其中支持向量机模型脱颖而出,准确率达到 92%,表现最佳。本研究表明,根据最重要的判别特征确定的前 13 个区域已经失去了与丘脑的显着联系。与健康成年人和老年人相比,AD 患者的黑质、网状部、黑质、致密部和伏隔核的功能连接强度持续下降。本研究结果与早期采用各种神经成像技术的研究结果相吻合。这项研究表明,将 ML、图论和 rs-fMRI 分析相结合的综合方法在 AD 预测中具有转化潜力,为更准确的诊断和早期预测 AD 提供了潜在的生物标记。
引用:Jonathan RT Lakey 等人。“新型 BrainView qEEG 判别数据库的构建与验证”。Acta Scientific Neurology 7.6 (2024): 25-51。
自主获取输入的层次表示。该研究开发了分类算法,用于识别数字字符(0-9)中的手写数字,分析分类器组合方法并确定其准确性。该研究旨在优化同时处理多个脚本时的识别结果。它提出了一种简单的分析技术、线性判别分析 (LDA) 实现和用于数字字符分类的 NN 结构。然而,测试显示 LDA 分类器的结果不一致。该方法将基于配置文件的特征提取 (FE) 与高级分类算法相结合,可以显著改善 HWR 数字字符领域,这从它产生的不同结果可以看出。该模型在 MNIST 数据集上的表现为 98.98%。在 CPAR 数据库中,我们完成了跨数据集评估,准确率为 98.19%。关键词:手写识别;深度学习;神经网络;特征提取;线性判别分析;准确性
微型光纤磁场传感器由于其对抗电磁干扰和紧凑性而引起了极大的兴趣。然而,材料的固有热力学特性使温度交叉敏感性在感知准确性和可靠性方面都是挑战性的问题。在这项研究中,设计了一个超型多核纤维(MCF)尖端传感器,以区别地测量磁场和温度,随后对此进行了实验评估。新颖的3D打印感应分量由一个碗形的微型站点和一个MCF末端的聚合物微流体浸润的微腔组成,充当两个微型Fabry-Perot干涉仪。通过将铁微球掺入微磁管中来实现微型磁场的磁灵敏度,而微流体浸润的微腔增强了高度敏感的温度感应的能力。在MCF的两个通道中使用此微小的光纤面条设备允许通过确定两个参数的灵敏度系数矩阵来区分磁场和温度。该设备表现出高磁场强度灵敏度,约为1 805.6 pm/mt,快速响应时间约为213 ms,高温灵敏度为160.3 pm/℃。此外,传感器的状况较低,为11.28,表明两参数测量的可靠性很高。所提出的3D打印的MCF-TIP探针通过单个光纤内的多个通道检测多个信号,可以为歧视性测量提供一个超级,敏感和可靠的方案。碗形的微型管理器还提供了一个有用的平台,用于将微观结构与功能材料结合在一起,扩展多参数感应方案并促进MCF的应用。
摘要。缺血性冠心病是全球死亡的第一大原因。发现这种疾病只能通过直接与心脏病专家进行咨询,这当然不小。因此,需要系统来检测精度但低成本的患者的心脏病。随着技术的发展,尤其是在人工智能领域,有机器学习技术可以增强自动检测能力。线性判别分析是预测尽早检测心脏病的机器学习方法之一。在这项研究中,实施线性判别分析算法以对心脏病进行分类。使用的数据集来自UCI机器学习存储库。这项研究进行了两种实验疾病,对心脏病进行了两种基于痛苦的心脏病分类,其他是将心脏病分类为5级阶段。结果证明,使用2类LDA的分类器的性能大于5类。LDA算法的性能在将心脏病与2个标签分类为靶标或输出s中。从这些结果中,精度值为0.82,召回值为0.81,F1得分值为0.81,精度为81.22%。