定向频率分析和记录 (DIFAR) 声纳浮标已被海军使用了数十年,它通过单个传感器为低频(小于 4 kHz)声源提供磁方位。计算技术的进步使这种声学传感器技术越来越易于使用且功能更强大。此处提供的信息旨在帮助新用户确定 DIFAR 传感器是否适合鲸鱼声学研究。须鲸的声学探测范围平均接近 20 公里,但根据条件不同,范围从 5 到 100 公里不等。DIFAR 声纳浮标到典型研究船的无线电接收范围平均为 18 公里,船上有全向天线,声纳浮标上有标准天线。对一组鲸鱼叫声分析了 DIFAR 方位精度,其中鲸鱼的轨迹是众所周知的。经发现,DIFAR 传感器的方位标准偏差为 2.1 度。可以使用 DIFAR 方位消除已知位置研究船声音的系统误差和磁偏差。DIFAR 传感器阵列需要的传感器比传统水听器阵列少,有时可以提供比传统水听器使用的“到达时间”双曲线方法更准确的源位置。与传统水听器相比,使用 DIFAR 传感器更容易定位船舶等连续声音,因为通常很难找到瞬态特征来估计使用传统水听器阵列进行双曲线定位所需的时间差。DIFAR 水听器系统非常适合露脊鲸、蓝鲸、小须鲸、长须鲸和其他须鲸的叫声,以及包括船舶在内的许多其他声源。
00 °C 摄氏度 00° 00' 00” 度、分、秒 000° M 磁航向 AAIB 航空事故调查处 aal 机场以上 ACC 区域管制中心 ACMP 交流电动泵 ADF 自动测向仪 ADI 姿态指引仪 AEC 机尾设备中心 agl 地面以上 AIP 航空资料出版物 amsl 平均海平面以上 AOC 航空运营人证书 APP 进近 APU 辅助动力装置 ARO 飞机报告处 ATC 空中交通管制 ATIS 自动航站楼信息服务 ATPL 航空运输飞行员执照 BKN 破损 C 摄氏度 CAP 民航出版物 CB 积雨云或断路器 CG 重心 cm 厘米 CRM 驾驶舱资源管理 CVR 驾驶舱语音记录器 DFDR 数字飞行数据记录器 DME 测距设备 EASA 欧洲航空安全局 EDP 发动机驱动泵 EFI 电子飞行仪表 EICAS 发动机指示和机组警报系统 EPR 发动机压力比 ETA 预计到达时间 FAA 联邦航空管理局 FAR 联邦航空条例 FDR 飞行数据记录器 FEC 前方设备中心 FIR 飞行信息区 FMC 飞行管理计算机 FMU 燃油计量单位 FO 副驾驶 FOM 飞行操作手册 fpm 英尺/分钟 ft 英尺 g 重力加速度 GCU 发电机控制单元 GPWS 近地警告系统 GRN 赫罗纳机场 Hpa 百帕斯卡 小时 小时 分钟 HSI 水平情况指示器 IAP 起始进近点 ICAO 国际民用航空局
了解人类驾驶员在与自动车辆(AV)相互作用中的行为可以帮助未来AV的发展。对这种行为的现有调查主要集中在一个情况下先验需要采取行动的情况,因为人类具有通行权。但是,即使未来的AV可能需要主动管理互动,即使它们具有对人类的途径,例如,人类驾驶员在接近的AV的前面左转。尚不清楚AVS在这种互动中如何表现以及人类对它们的反应。为了解决这个问题,在这里,我们研究了人类驱动因素的行为(n = 19),当在驾驶模拟器实验中与未构造的左转弯相互作用时。,我们在与执行微妙的纵向裸机操作的AV互动时测量了参与者决定的结果(GO或Ster)和时间安排,例如短暂减速,然后加速回到其原始速度。我们发现,参与者的行为对减速性敏感,但不是加速度的轻推。我们将获得的数据与人类决策的漂移扩散模型的几种变体进行了比较。最简约的模型捕获了数据,该数据假设了在到达时间和到固定决策边界的距离和距离上的动态信息的嘈杂集成,并具有对GO决策的初始积累偏见。我们的模型不仅说明了观察到的行为,还可以灵活地产生对人类对任意纵向AV动作的反应的预测,并且可以用于为未来的人类行为研究提供信息,并将此类研究的洞察力纳入用于AV交互计划的计算框架中。
传输电子显微镜(TEM)已被证明是所有搜索区域中极其强大且通用的工具,这些工具从原子量表空间分辨率下进行成像受益[1-3]。尽管可以从NM和Sub-NM分辨率的样品的静态快照中获得大量信息,但如果可以升级该技术的到达,则在升级该技术的范围以包括对样品结构,组合和对应用程序的响应中的质量变化以及其他元素的响应中的响应方式的研究中有明显的突破性进步,并在4 dectime of Ade aft eq afteremention中进行了四分之一的范围。与空间分辨率的外部进步形成鲜明对比(最近通过引入亚物化校正来打破了子角屏障[5,6]),由于固有的时间需要长时间的曝光时间,因此,TEMS的时间分辨率受到限制,以击败基本的射击限制,以击败基本的射击限制。给定TEM柱中的平均电子电流(通常低于1 µA),以便提供照明剂量足以实现高质量成像,需要以毫秒或更长的时间为单位的时间间隔。已经有多次尝试解决电子成像中的这种缺陷。一种解决方案是在电子柱中主要是非常低的电流,但是将电子在Ob-Ject平面的到达时间进行了综合,并以相同的确切方式重复了效应的发生效应的发生,并重复了数百万的标本照明[4]。这种频道镜检查允许在电子和磁场动力学(Pinem and Magement Vortex)的成像中进行开创性结果[8,9]。当样本动力学不能以相同的方式复制(不可逆的过程)时,就必须诉诸于单个镜头照明,这是一个将所有电子发送到一个时间持续时间
独特的中央生产过程的测量将使大型强子对撞机物理项目扩展到电弱领域和 QCD 领域成为可能,并且对物理的特殊敏感性超出了标准模型。为此,最近安装了 CMS-TOTEM 精密质子光谱仪,旨在在高亮度大型强子对撞机的正常操作条件下运行。光谱仪由位置和时间探测器组成,安装在距 CMS 两侧交互点约 210 m 的位置,位于称为“罗马罐”的移动结构内,可让您更接近光束。从相互作用中完好无损地出现的散射质子,仅损失了一小部分动量,被光束包络外部的大型强子对撞机磁铁偏转,并用硅像素探测器平面进行测量。相反,需要时间探测器来确定主顶点,利用两侧两个质子的到达时间信息,并在此基础上大大减少由于许多堆积事件而导致的背景。由于探测器将受到高辐射注量(估计约为 3 × 10 15 n eq / cm 2 ),因此 CT-PPS 跟踪器选择了所谓的 3D 硅像素传感器。来自三个主要制造商(CNM、FBK 和 SINTEF)的传感器在实验室和辐照前后的光束上进行了测量,以评估其特性和性能。最终探测器中使用了 CNM 传感器,以及为 CMS 像素跟踪器第一阶段升级而开发的读出芯片。两个六层空间站在 2016/2017 年大型强子对撞机冬季停运结束时进行了组装、测试和安装。探测器的调试正在进行中,通过使用从中心像素跟踪器开始开发的采集软件。检测器已经过校准,能够在 CMS 采集链内获取数据。第一次比对运行的数据已成功收集,分析正在进行中。
背景和目的:建议进行神经心理学和心理物理测试,以评估明显的肝病(OHE)的风险,但其准确性是有限的。高莫纳米亚人在OHE的发病机理中是中心的,但其预测效用尚不清楚。在这项研究中,我们旨在确定神经心理学或心理物理测试和氨的作用,并开发一种模型(Ammon-Ohe),以分层持续患有肝硬化的门诊患者的OHE发育风险。方法:这项观察性的前瞻性研究包括426个门诊病人,没有三个肝单元的先前OHE,其中位数为2。5年。心理测量肝病评分(PHES)<-4或临界频率(CFF)<39被认为是异常的。氨将其标准化为正常(AMM-ULN)的上限。多变量脆弱的竞争风险和随机生存的森林分析,以预测未来的OHE并开发Ammon-Ohe模型。使用来自两个独立单位的267和381例患者进行外部验证。结果:根据PHES或CFF和Ammonia在到达时间(log-Rank p <0.001)中存在显着差异,在PHES异常PLUS PLUS PLUS GULL AMM-ULN的患者中,风险最高(危险比4.4; 95%CI 2.4-8.1; p <0.001; p <0.001;与正常的PHES和AMM--uln和AMM--uln相比)。在多变量分析中,AMM-ULN而不是PHE或CFF是OHE发展的独立预测指标(危险比1.4; 95%CI 1.1-1.9; p = 0.015)。Ammon-Ohe模型(性别,糖尿病,白蛋白,肌酐和AMM-ULN)的C-指数为0.844,在两个外部验证队列中预测OHE的第一集,为0.728。结论:在这项研究中,我们开发了和验证了Ammon-Ohe模型,其中包括易于使用的临床和生化变量,可用于鉴定门诊患者,该门诊患者具有开发第一集的最高风险。
1引言有效的流程计划是网络社区中的一个重要且研究的问题[3,5,7,12,13,23,24,27]。使用启发式方法,平衡机制和网络流量的截止日期,在调度流方面有很多工作。传统上,实施流程计划有两种广泛的方法。首先是集中式的AP PROACH,其中中央控制器从所有流中收集网络数字并计算所需的流程度[3,12,13,27,49]。第二个是在分布式的方式借助数据包或开关支持[5,7,23,44],以分布式的方式进行近似启发式方法,例如最短剩余的处理时间(SRPT)。大多数流程调度方法都集中在传统的数据中心流量上,这是爆发且短[9]。此外,传统数据中心流的到达通常是独立且无法预测的。今天,随着对基于AI的服务的需求不断增长,数据中心中的深度神经网络(DNN)培训和良好的流量已成倍增加。与传统的数据中心工作负载不同,DNN培训和微调作业具有定期的流量模式,在该模式中,每个训练迭代的开始时间都取决于之前迭代的完成,从而对流量到达时间产生依赖性[53,59,64]。我们证明,基于剩余的处理时间(即Pfabric [5],PDQ [23]和PIAS [7])的调度技术并不总是最适合安排DNN作业的最佳选择。直觉上,这是因为此类技术根据网络中当前流的状态做出本地调度决策,而无需考虑定期作业的流量到达模式。在DNN工作负载中,这种效果变得不利,其中在一个迭代中完成流量会影响随后迭代的完成时间。最近的研究,例如Muri [64]和Cassini [52,53],已经证明,对于DNN工作负载,促进交流沟通需求的时间表达到了时间表网络计划。他们将交织的想法定义为一个DNN作业的通信阶段(高网络授权)与计算阶段(低网络
CBP ONE:OIT在Google Play和Apple App商店和CBP One Web应用程序上启动了CBP One™移动应用程序。CBP ONE™是旅行者和利益相关者访问CBP移动应用程序和服务(例如CBP Roam,I-94和约会功能)的直观单门户。CBP ONE™的第一阶段包括I-94旅行者和经纪人功能。I-94输入功能使旅行者能够在到达陆地边境过境点之前申请I-94临时I-94。第一阶段还包括要求检查可腐烂货物的移动能力。检查约会请求功能使经纪人,承运人和转发者能够要求进入美国的可腐烂货物的检查时间还部署了CBP一个应用程序中的“无证件非公民的预先信息”提交过程。该过程允许个人提交个人信息,并在到达POE之前选择所请求的到达时间。此信息的高级集合改进了处理。OIT完成了新的CBP One™应用程序功能的开发,该功能使TSA官员可以通过捕获照片或输入数字(a-number)来查询传记数据来验证个人的身份。这有助于跟踪美国OIT中的假释移民,还添加了国际组织(IOS)可以用来查找主题和案件状态的第三个查询。此第三个查询选项允许iOS除了照片和数字外,还可以按名称和出生日期搜索。iOS使用CBP One™来验证移民是否已在MPP中注册,以待定的法庭日期。OIT开始在I-94后端开发,以支持使用A-number从I-94表单中提取传记数据的功能。这将允许CBP官员使用其I-94处理移民。OIT不断为CBP One™添加其他功能。OIT不断为CBP One™添加其他功能。
摘要 - 我们提供了通过利用一类近距离飞行时间(TOF)距离传感器捕获的瞬态直方图来恢复平面场景几何形状的方法。瞬态直方图是一个一维的时间波形,它填充了入射在TOF传感器上的光子的到达时间。通常,传感器使用专有算法处理瞬态直方图以产生距离估计值,距离估计值通常在几种机器人应用中使用。我们的方法直接利用了瞬态直方图,以使平面几何形状能够更准确地恢复,仅使用专有距离估计值,并且平面表面的反照率的一致恢复,而单独的距离估计是不可能的。这是通过可区分的渲染管道来完成的,该管道模拟了瞬态成像过程,从而可以直接优化场景几何形状以匹配观测值。为了验证我们的方法,我们从广泛的观点中捕获了八个平面表面的3,800个测量值,并表明我们的方法在大多数情况下都以数量级优于专有距离基线的基线。我们演示了一种简单的机器人应用程序,该应用程序使用我们的方法感知与安装在机器人臂端效应器上的传感器的平面表面的距离和斜率。I. i tratoduction o ptally of飞机近距传感器最近已广泛使用场景瞬变。尽管这些传感器具有许多理想的属性,但现有的机器人应用程序不利用瞬态直方图,而是依靠低分辨率(最多最多这些传感器通过用光脉冲照亮场景,并在瞬态直方图中从场景中重新转移到场景中,从而测量该脉冲的形状,如图1。这些瞬态传感器在机器人技术中的使用是由于它们可靠地报告较大范围内(1cm -5m)的距离估计值,同时较小(<20 mm 3),轻量级和低功率(按测量的毫米级订单)[1],[2],[2]。由于其形式,可以将瞬态传感器放置在较高分辨率3D传感器无法的位置,例如在机器人操纵器的抓地力或链接上,或在非常小的机器人上。
1. 评估和管理气道:A. 按需供氧,治疗休克和/或呼吸窘迫B 使用非再呼吸面罩将氧气直接送到呼吸困难婴幼儿的面部,不要使用吹气式供氧,因为这是无效的。父母可以帮助您施用氧气和/或雾化器,因为如果治疗来自他们,孩子更有可能耐受。唯一的例外是当孩子的躁动可能造成危险时(例如,未接种疫苗的儿童中罕见的会厌炎病例)C 应用脉搏血氧仪并按照脉搏血氧仪的程序进行治疗D. 准备好辅助通气2. 评估患者的一般情况、相关病史并确定 OPQRSTI 和 SAMPLE。特别要询问患者潜在疾病的严重程度。他们上次就诊或因此住院是什么时候?插管过吗?询问药物依从性。 3. 患者近期是否患过任何可能加剧潜在呼吸系统疾病的疾病/感染(例如,感冒引发了 COPD 发作?)4. 不要忽视非慢性肺部问题引起的呼吸困难的其他原因(例如,急性心肌梗死、休克、气胸、发烧)——保持广泛的鉴别诊断!5. 尝试了解患者的复苏状态(即 DNR 舒适护理或 DNR 舒适护理逮捕)。插管是一种积极的治疗方法,可能违背患者的意愿。6. 听诊肺部前部,左右比较,尽可能听诊后部(如果患者可以坐起)。在衬衫下直接在胸壁上听;衣服织物可能听起来像噼啪声。7. 让患者采取舒适的位置 8. 联系医疗控制中心,告知患者状况并立即转运,除非 ALS 单位正在途中,预计到达时间不到 5 分钟。 9. 任何先进气道(ET 管、i-gel、LMA、King 或 Combitube)必须通过连续呼气末二氧化碳 (ETCO2) 波形二氧化碳图验证其位置