摘要:工业控制系统在当今的制造系统中发挥着核心作用。在保持和提高生产能力和生产力的同时,生产系统的复杂性也随之大幅增加,并朝着更加灵活和可持续的方向发展。为了应对这些挑战,需要先进的控制算法和进一步的发展。近年来,基于人工智能 (AI) 方法的发展引起了研究和行业对未来工业控制系统的极大关注和相关性。基于人工智能的方法越来越多地被应用于各种工业控制系统层面,从单个自动化设备到复杂机器的实时控制、生产过程和整个工厂的监督和优化。因此,人工智能解决方案被应用于不同的工业控制应用,从传感器融合方法到新型模型预测控制技术,从自优化机器到协作机器人,从工厂自适应自动化系统到生产监督控制系统。本篇展望论文的目的是概述人工智能方法在不同层次上对工业控制系统的新应用,以提高生产系统的自学能力、整体性能、相关流程和产品质量、资源的最佳利用和工业系统安全性以及对不同边界条件和生产要求的适应能力。最后,讨论了主要的未决挑战和未来前景。
助理教授 Choong Yuen Onn 博士 日期:2022 年 6 月 16 日 联合导师 商务与公共管理系 东姑阿都拉曼大学商务与金融学院
制造技术是一个不断发展的领域,它不断地融入新的迭代和创新,为当今的制造商创造激动人心的新机遇并打开进步之门。制造业面临着加工先进材料的挑战,这些材料需要高精度、尺寸精度、复杂几何形状和更好的表面光洁度,从而导致制造业发生重大转型。工业中对具有微型特征的微型部件的需求也与日俱增。为了应对这些工业挑战,特别是在“自力更生的印度”时代,工程专业的学生需要从研究人员那里了解各种先进的制造技术及其具体应用。印度政府的“印度制造”运动旨在将印度打造为全球制造业中心。拟议的在线短期课程的目标是与学员分享先进制造领域的演讲者为“Atma Nirbhar Bharat” 的可直接工业应用的产品进行/观察到的尖端研究和开发。演讲者是来自外国大学、印度理工学院 (IIT)、国家理工学院 (NIT)、CFTI 和其他知名机构的杰出研究人员。
制造技术是一个不断发展的领域,不断地融合新的迭代和创新,为当今的制造商创造令人兴奋的新机会,并为进步打开了大门。制造业在加工高精度,尺寸准确性,复杂的几何形状和更好的表面饰面的高级材料方面面临着挑战,从而导致制造业的重大转变。具有微特征的微型组件的需求在行业中也日益增加。要应对这些工业挑战,尤其是在“自我依赖印度”的时代,工程专业的学生需要了解研究人员本身的各种先进的制造技术及其特定应用。印度政府的“印度制造”运动是将该国视为全球制造中心。拟议的在线短期课程的目的是与参与者分享高级制造业领域的发言人,用于具有即时工业应用的产品,以“ Atma Nirbhar Bharat”的直接工业应用程序进行/观察到。演讲者是外国大学,IIT,NIT,CFTI和其他知名机构的杰出研究学院。
空客制造的 SpainSat NG-I 卫星成功发射 图卢兹,2025 年 1 月 30 日——空客制造的两颗新一代 SpainSat 卫星中的第一颗 SpainSat NG-I 已成功搭载猎鹰 9 号火箭从美国卡纳维拉尔角发射升空。该卫星由 Hisdesat 为西班牙武装部队运营,是欧洲最先进的安全通信卫星,在 UHF、Ka 和 X 波段运行,将在初步测试和调试后于 2025 年下半年投入地球静止轨道使用。空中客车防务与航天公司空间系统负责人阿兰·福雷表示:“SpainSat NG-I 采用了我们业界领先的 Eurostar Neo 平台支持的尖端安全通信技术,它的发射是西班牙和欧洲主权迈出的重要一步。它的创新有效载荷占卫星的 45% 以上,是在空客牵头的西班牙航天工业的共同努力下开发的。”
电线定向能量沉积(DED),也称为电线 - 弧形添加剂制造(WAAM),是一种金属3D打印技术,以其高效率,成本效益,构建量表的灵活性以及对建筑行业的适用性而闻名。但是,仍然缺乏有关WAAM元素结构性表现的基本数据,尤其是关于其疲劳行为的基本数据。因此,已经进行了对WAAM钢板疲劳行为的全面实验研究,并在此报告。在几何,机械和微观结构表征之后,在单轴高周期疲劳载荷下测试了一系列WAAM优惠券。已经进行了涵盖各种应力范围和应力比(r = 0.1、0.2、0.3和0.4)的正式和加工息票的75次疲劳测试。数值模拟也研究了由其表面起伏引起的局部应力浓度。使用恒定寿命图(CLD)和S -n(应激寿命)di agrams分析疲劳测试结果,该结果基于标称和局部应力。CLDS表明,未建造的WAAM钢的疲劳强度对不同的应力比相对不敏感。S -n图显示,相对于机械加工材料,在疲劳耐力限制的疲劳耐力极限中,表面起伏的降低约为35%,在同一负载水平下疲劳寿命减少了约60%。还为WAAM钢提出了基于标称应力的初步压力和基于局部应力的S-N曲线。表明,AS建造和加工的WAAM优惠券分别表现出与常规钢对接焊缝和S355结构钢板的相似疲劳行为。
• 用于大尺寸部件的电弧增材制造 (WAAM) 装置。 • 用于功能梯度部件的双线 WAAM 装置。 • 基于激光 + 粉末的直接能量沉积系统。 • GE Mtlab 200R 粉末床熔合。 • Mark Two 碳纤维复合材料 3D 打印机。 • HP Jet Fusion 580 彩色粘合剂喷射 3D 打印机。 • ProJet6000 SLA。 • Stratasys Fortus 450 MC (FDM)。 • EnvisionTec 3D Bioplotter
摘要 为了帮助制造企业实现人工智能 (AI) 的价值,我们开始了为期六年的研究和实践,以增强流行且广泛使用的 CRISP-DM 方法。我们通过添加“操作和维护”阶段以及嵌入基于任务的框架将任务与技能联系起来,将 CRISP-DM 扩展为 AI 解决方案的连续、主动和迭代生命周期。我们的主要发现涉及操作和维护 AI 解决方案和管理 AI 漂移的艰难权衡和隐性成本,以及确保在整个 CRISP-DM 阶段中存在领域、数据科学和数据工程能力。此外,我们展示了数据工程如何成为 AI 工作流程中必不可少但经常被忽视的一部分,对这三种能力的参与轨迹提供了新颖的见解,并说明了如何将增强的 CRISP-DM 方法用作 AI 项目的管理工具。
