c) 剖面 A – A*。剖面图中显示的 Riegel Horizon (RH) 未在数值模型中考虑。数据来自 GDI-BW (2015)、Geofabrik (2022)、USGS (2017)。水头数据来自弗莱堡环境保护局和巴登-符腾堡州环境、调查和自然保护研究所 (LUBW)。剖面图根据 Wirsing 和 Luz (2005) 修改。
项目经理:(VDOT)、勘测者和日期(完成):(L&D 勘测办公室经理或公司和顾问勘测项目经理)、设计者:(负责人)和地下设施提供者和日期(完成)的名称应显示在每张平面图和剖面图边框的左上角。之前未分配的项目编号可通过 IPM 中的“项目池”获取。州项目编号必须显示在它们适用的平面图和剖面图上。(联邦项目编号只能显示在标题表上。)桥梁项目编号和主要排水结构(D#)只能出现在实际适用于该结构的图纸上,例如显示桥梁、其剖面和典型部分、十字路口剖面(如果适用)和标题表的平面图。
表 1. 有关环境和社会参数的主要国家立法 ...................................................................................................................... 21 表 2. 与许可程序相关的法律 ................................................................................................................................................ 37 表 3. 欧洲复兴开发银行的项目影响报告书 ............................................................................................................................................. 41 表 4. 环境和社会影响评估与塞尔维亚环境影响评估流程之间的异同 ............................................................................................. 43 表 5. 贝尔格莱德 - 尼什铁路线的拟议分段 ............................................................................................................. 49 表 6. 桥梁和桥梁结构 ................................................................................................................................................ 53 表 7. 车站数量和位置 ................................................................................................................................................ 53 表 8. 相关设施信息 ................................................................................................................................................ 59 表 9. 主要标准及加权系数 ............................................................................................................................................. 63 表 10. 各方案对人口的社会影响 ................................................................................................................................ 64 表 11. 各方案的平均噪音影响,考虑了较大的定居点................................................................................................................................ 65 表 12. 三种方案影响概览................................................................................................................................... 66 表 13. 平均二氧化碳排放量,以每客公里和每吨公里计算......................................................................................................................... 68 表 14. 最终选定的标准集......................................................................................................................................................... 68 表 15. 所有替代方案按每个子标准给出的数值.................................................................................................................... 69 表 16. 替代方案比较......................................................................................................................................................... 71 表 17. 替代方案比较......................................................................................................................................................... 73 表 18. 替代方案比较............................................................................................................................................................................. 74 表 19. 替代方案比较 ................................................................................................................................................ 76 表 20. 剖面 Obrež-Ratare, PD 182 的地下水位 ...................................................................................................... 107 表 21. 剖面 Varvarin-Ćićevac, PL-191 的地下水位 ............................................................................................. 107 表 22. 剖面 Striža-new, 951А 的地下水位 ............................................................................................................. 107 表 23. 剖面 Žitkovac-RO Moravica, 505 的地下水位 ............................................................................................. 108 表 24. 剖面 Bobovište, 500 的地下水位 ............................................................................................................. 108 表 25. 剖面 mramor 的地下水位 ............................................................................................................................. 108 表 26. 保护区 - 地下水卫生保护区概览来源...................................................................................................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量(Qavg)值概览 ...................................................................................................................................................................................... 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位(havg)值概览 ............................................................................................................................................................................. 120 表 29. 水分类 ...................................................................................................................................................................................................... 121108 表 24. Bobovište, 500 剖面地下水位..................................................................................................................... 108 表 25. mramor 剖面地下水位...................................................................................................................................... 108 表 26. 保护区 - 地下水源卫生保护区概览......................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量 (Qavg) 值概览 ............................................................................................................................. 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位 (havg) 值概览 ............................................................................................................................................. 120 表 29. 水分类......................................................................................................................................................................... 121108 表 24. Bobovište, 500 剖面地下水位..................................................................................................................... 108 表 25. mramor 剖面地下水位...................................................................................................................................... 108 表 26. 保护区 - 地下水源卫生保护区概览......................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量 (Qavg) 值概览 ............................................................................................................................. 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位 (havg) 值概览 ............................................................................................................................................. 120 表 29. 水分类......................................................................................................................................................................... 121
1 级 • 钻孔与爆破审计 • 钻孔与爆破调查 • VOD 监控 • 振动与气流监控 • 碎片分析 • 爆破视频分析 • 2D 激光剖面 • 爆破调查 • 钻孔测径 • Boretrak • 反应地面测试 • 3G 表面剖面 • 无人机 • 高速视频分析 • 岩石响应测试 (Tmin) • 回归分析 • 爆破设计和预测 • 调查服务
摘要。大气湍流通常会阻碍远距离光学成像应用。湍流对成像系统的影响可以表现为图像模糊效应,通常通过系统中存在的相位失真来量化。模糊效应可以根据沿传播路径测量的大气光学湍流强度及其对成像系统内相位扰动统计的影响来理解。获取这些测量值的一种方法是使用动态范围的瑞利信标系统,该系统利用沿传播路径的战略性变化的信标范围,有效地获得影响光学成像系统的像差的估计值。我们开发了一种从动态范围的瑞利信标系统中提取断层扫描湍流强度估计值的方法,该系统使用 Shack - Hartmann 传感器作为相位测量装置。介绍了从快速序列中获得的战略性范围变化的信标测量中提取断层扫描信息的基础,以及典型湍流场景的建模示例。此外,处理算法还用于模拟孤立强湍流层的识别。我们介绍了所选处理算法的基础,并讨论了该算法作为大气湍流分析方法的实用性。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.8.081807]
天线选项 010-10040-01 GA 56 低剖面天线套件,不含电缆 包括: 011-00134-00 低剖面天线组件 1 115-00031-00 背板 1 210-10004-09 自锁螺母,#8-32 4 253-00002-00 天线垫圈 1 010-10040-02 GA 56 法兰安装天线 包括: 011-00147-00 法兰安装低剖面天线组件 1 115-00080-00 螺母板 1 211-62212-14 螺钉,#10-32 X 5/8 4 253-00011-00 天线垫圈 1 320-00003-00 15 英尺低损耗航空延长线,带直角 BNC 连接器 320-00003-02 30 英尺低损耗航空延长线,带直角 BNC 连接器 330-00087-00 连接器,BNC,公头,夹钳 注意:制作天线电缆需要一个电缆组件和一个 BNC 连接器,或者安装人员也可以使用符合第 2.3 段要求的材料来制作。011-00313-00 连接器(J1 和 J2)套件
天线选项 010-10040-01 GA 56 低剖面天线套件,不含电缆 包括: 011-00134-00 低剖面天线组件 1 115-00031-00 背板 1 210-10004-09 自锁螺母,#8-32 4 253-00002-00 天线垫圈 1 010-10040-02 GA 56 法兰安装天线 包括: 011-00147-00 法兰安装低剖面天线组件 1 115-00080-00 螺母板 1 211-62212-14螺钉,#10-32 X 5/8 4 253-00011-00 天线垫圈 1 320-00003-00 15 英尺低损耗航空延长线,带直角 BNC 连接器 320-00003-02 30 英尺低损耗航空延长线,带直角 BNC 连接器 330-00087-00 连接器,BNC,公头,夹钳 注意:制作天线电缆需要一个电缆组件和一个 BNC 连接器,或者可以由安装人员使用符合第 2.3 段要求的材料制作。 011-00313-00 连接器(J1 和 J2)套件
天线选项 010-10040-01 GA 56 低剖面天线套件,不含电缆 包括: 011-00134-00 低剖面天线组件 1 115-00031-00 背板 1 210-10004-09 自锁螺母,#8-32 4 253-00002-00 天线垫圈 1 010-10040-02 GA 56 法兰安装天线 包括: 011-00147-00 法兰安装低剖面天线组件 1 115-00080-00 螺母板 1 211-62212-14螺钉,#10-32 X 5/8 4 253-00011-00 天线垫圈 1 320-00003-00 15 英尺低损耗航空延长线,带直角 BNC 连接器 320-00003-02 30 英尺低损耗航空延长线,带直角 BNC 连接器 330-00087-00 连接器,BNC,公头,夹钳 注意:制作天线电缆需要一个电缆组件和一个 BNC 连接器,或者可以由安装人员使用符合第 2.3 段要求的材料制作。 011-00313-00 连接器(J1 和 J2)套件
一系列飞行试验展示出一种测量空对地倾斜路径上路径分辨光学湍流量(如 C 2 n)的新方法。本文介绍了数据采集试验,试验涉及两束激光束在 8 公里倾斜路径上在一个轨道空中平台和一个静止地面终端之间传播。地面和飞行中的测量数据同时收集,并使用差分倾斜方差 (DDTV) 技术计算 C 2 n 剖面。本文介绍了 DDTV 技术,该技术能够对湍流强度进行路径分辨测量,从而得到 C 2 n 剖面。得到的湍流剖面揭示了最靠近飞机的统计数据中被认为是来自飞机边界层的气动光学污染。因此,气动光学环境的污染可以相对于其余大气传播路径进行量化。最后,本文介绍了将测量的大气湍流剖面与最先进的大气模型进行比较的分析。这些分析超越了 C 2 n 比较,并展示了测量与建模在关键定向能系统传播参数方面的比较,例如格林伍德频率、相干直径、里托夫数、等晕角、泰勒频率、开环抖动和开环斯特列尔比。在空对地和地对空定向能系统的背景下分析了斜路径湍流。
天线选项 010-10040-01 GA 56 低剖面天线套件,不含电缆 包括: 011-00134-00 低剖面天线组件 1 115-00031-00 背板 1 210-10004-09 自锁螺母,#8-32 4 253-00002-00 天线垫圈 1 010-10040-02 GA 56 法兰安装天线 包括: 011-00147-00 法兰安装低剖面天线组件 1 115-00080-00 螺母板 1 211-62212-14螺钉,#10-32 X 5/8 4 253-00011-00 天线垫圈 1 320-00003-00 15 英尺低损耗航空延长线,带直角 BNC 连接器 320-00003-02 30 英尺低损耗航空延长线,带直角 BNC 连接器 330-00087-00 连接器,BNC,公头,夹钳 注意:制作天线电缆需要一个电缆组件和一个 BNC 连接器,或者可以由安装人员使用符合第 2.3 段要求的材料制作。 011-00313-00 连接器(J1 和 J2)套件