摘要。使用中子衍射和轮廓方法的残留应力测量在由316升不锈钢粉制成的阀外壳上进行,并使用激光粉末床融合添加剂制造具有复杂的三维内部特征。测量结果捕获了残留应力场的演变,该状态是将阀外壳连接到底板上的状态,到达壳体从底板上切开的状态。利用此切割,因此使其在此应用中是非破坏性的测量,轮廓方法映射了整个切割平面上的残留应力分量正常的(通过切割完全缓解了这种应力场),以及由于切割而导致的整个壳体中所有应力的变化。中子衍射测量的无损性质启用了在切割前和切割后的构建点的各个点的残余应力测量。在两种测量技术之间观察到了良好的一致性,这两种测量技术表明,在外壳的外部区域中显示了较大的拉伸方向残余应力。轮廓结果表明,从两个不同区域中从底板上移除构建后,多个应力分量发生了很大变化:在平面附近,在该平面附近,从基本板中切开构建,并在充当应力集中器的内部特征附近。这些观察结果应有助于理解基本板附近构建破裂的驾驶机制,并确定对结构完整性的关注区域。中子衍射测量还用于显示基本板附近的剪切应力明显低于正常应力,这是对轮廓方法的重要假设,因为不对称切割。
摘要 烧结材料由于工艺简单而具有生产率优势,但由于强度不足而不适用于高负荷齿轮。为了提高烧结材料的疲劳强度,作者开发了无需二次加工即可实现高密度的液相烧结技术。在本研究中,评估了硼添加量(0-0.4 mass%)对 Fe-Ni-Mo-BC 烧结渗碳材料滚动接触疲劳强度的影响。此外,为了仅评估硼添加效果而不考虑密度的影响,控制每个试样的烧结密度相同。在本研究的测试范围内,硼添加量为 0.1 mass% 的材料滚动接触疲劳极限(p max )lim 表现出最高值,超过了 1700 MPa。该值不仅明显高于无硼材料的(p max )lim(1100 MPa),而且与锻钢的(p max )lim(1900 MPa)相比也是极高的值。从孔隙结构和材料结构两个角度研究了0.1B辊的(p max )lim明显较高的原因。孔隙结构方面,无硼辊的孔隙形状为不规则形状,而0.1B辊的孔隙形状为球形。通过对滚动接触疲劳试验中辊内部的正交剪切应力进行CAE分析的结果发现,0.1B辊孔隙周围的正交剪切应力的最大值比无硼辊低约35 %。该结果表明,0.1B辊比无硼辊更不容易出现裂纹。即,认为0.1B材料的孔隙形状对滚动接触疲劳强度的提高有影响。
抽象的塑料污染会引起严重的环境问题,并危害着土地和水生环境中人类和动物的健康。尽管尼日利亚每天都会产生数百吨塑料废物,但由于只有一小部分是回收的,因此仍然有很大比例的造成的回归生态系统。尼日利亚越来越多地生产一次性塑料废物进入陆地和海洋是该国日益增长的塑料污染问题的主要原因。.因此,为了减少塑料利用对人类和环境的有害影响是必要的。塑料对塑料对塑料的影响也可以恢复为3D的印刷品。在这项研究中,设计和开发了用于回收高密度聚乙烯的塑料丝挤出机,从而降低了处置它带来的负面环境影响。由料水,螺钉,枪管,模具和运动系统组成的挤出机的基本组件。温度,氧气和剪切应力均导致塑料在细丝中挤出过程中塑料恶化。因此,这项研究检查了不同挤压温度对由高密度聚乙烯(HDPE)制成的细丝质量的影响。塑料颗粒融化并由于它们之间的摩擦与枪管表面以及加热带产生的热量而流入模具。因此,为了使用HDPE产生质量的3D细丝,必须保持可接受的温度条件。塑料丝与最佳沉淀压缩,温度在150至230摄氏度之间的组合挤出,并逐渐增加枪管内的熔融颗粒的压力。.熔化的塑料在低温下粘附在桶上,但在高温下转向炭。基于结果,挤出机产生了适合于200 O的3D打印的出色细丝。这项研究的结果强调了在挤出过程中温度调节的重要性,以保证预期的丝状质量。
单元1:工程数学线性代数:矩阵代数,线性方程系统,特征值,特征向量。Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Divergence theorem, Green's theorem.微分方程:一阶方程(线性和非线性),具有恒定系数的高阶线性微分方程,参数变化的方法,Cauchy方程,Euler方程,初始值和边界值问题,部分微分方程,部分微分方程,变量分离方法。复杂变量:分析函数,Cauchy的积分定理,Cauchy的积分公式,Taylor系列,Laurent系列,残基定理,解决方案积分。概率和统计:对定理,有条件的概率,平均值,中位数,模式,标准偏差,随机变量,离散和连续分布,Poisson分布,正态分布,二项式分布,相关分析,回归分析分析,回归分析分析:矩阵逆上的矩阵倒立,求解非元素平等的方法,差异和差异化方法,差异和差异化方法,差异和差异性方法差异化方法,差异差异和差异化方法差异化方法和差异方法。相关分析。单元2:应用力学和设计工程机制:自由图和平衡;摩擦及其应用,包括滚动摩擦,Belt-Pulley,刹车,离合器,螺丝千斤顶,楔子,车辆等。;桁架和框架;虚拟工作;平面运动中刚体的运动学和动力学;冲动和动量(线性和角度)以及能量配方;拉格朗日方程。材料力学:应力和应变,弹性常数,泊松比; Mohr的圆圈,用于平面应力和平面应变;薄缸; shear force and bending moment diagrams;弯曲和剪切应力;剪切中心的概念;梁的挠度;圆形轴的扭转;欧拉的
目的本课程的目标是学习如何在力学中使用高级数学工具,学习如何在可变形的身体,流变学响应中构建复杂应力 - 应变状态的物理和数学模型,并学习如何设计静态多样化的不确定的结构。在本课程中,学生将获得以下能力:能够在力学中使用高级数学工具,能够在可变形物体中构建复杂应力 - 应变状态的物理和数学模型,设计静态地倍增不确定的结构。计划遵循和完成课程的计划义务;相关研究文献的介绍;课程主题的概述; 3D连续体的概念;凯奇(Cauchy)对应力矢量,正常和剪切应力的定义,在变形体中有限体积的静态平衡,考奇(Cauchy)的压力定理;应力张量(Cauchy,第一Piola-Kirchhoff,第二个Piola-Kirchhoff,Biot等。学习成果);应力张量的偏离和静水部分;主应力和3D中的最大剪切应力;压力张量和压力张量偏离部分的不变性;菌株理论;位移载体,变形梯度,变形张量,小/有限菌株理论;小应变张量的几何解释;应变的兼容条件;由于外部载荷引起的弹性应变能;能量方法,每单位体积的应变能密度;虚拟工作的原则;理想情况是弹性材料,绿色弹性;物质各向异性;各向同性,线性弹性材料;从实验中确定材料常数;胡克定律,超弹性;体积和失真工作/能量;温度的影响; navier-lame方程;特定的应力应变状态;通风应力功能;使用FEM的计算机模拟;复杂的现实生活中的例子和案例研究的先决条件符合硕士机械工程研究计划的入学条件 - 研发计划。
确定施加载荷的位置点,以避免航空航天应用中使用的薄截面发生扭曲。 理解区分曲梁中中性轴和质心轴的概念。 理解为分析受扭转的非圆形杆而开发的类比模型,以及分析滚动体之间产生的应力和三维物体中的应力。 UNIT-I:应力分析:点的应力状态、任意平面上的应力分量、主应力、应力不变量、莫尔圆、最大剪切平面、八面体应力、平面应力状态、平衡微分方程、边界条件。应变分析:点附近的变形、点的应变状态、剪应变分量的解释、应变和主应变的变换、兼容条件。平面应变状态。线性应力-应变-温度关系:内能密度和互补内能密度。各向异性、正交各向异性和各向同性弹性的胡克定律。各向同性材料的热弹性方程 UNIT-II 剪切中心:轴对称和非对称截面的弯曲轴和剪切中心-剪切中心。薄壁截面的剪切应力、箱梁的剪切中心非对称弯曲:非对称弯曲梁的弯曲应力、非对称弯曲导致的直梁挠度。 UNIT-III:曲梁理论:温克勒-巴赫周向应力公式 – 局限性 – 校正系数 – 曲梁的径向应力 – 闭环承受集中和均匀载荷 – 链环中的应力。第四单元:扭转:线性弹性解,一般棱柱形杆——实心截面,如圆形、椭圆形、三角形和矩形,普朗特弹性膜(皂膜)类比;窄矩形截面,空心薄壁扭转构件,多连通截面。第五单元:接触应力:介绍,确定接触应力的问题,接触应力解所基于的假设;主应力表达式;计算接触应力的方法,点接触物体的挠度;两个物体在窄矩形区域接触的应力(线接触)垂直于面积的载荷,两个物体线接触的应力,垂直于和切向于接触面积的载荷。
注射引起的地震性已成为广泛部署增强的地热系统(例如)最关键的挑战之一。尤其是,一些EGS开发项目导致大型,破坏性的地震出乎意料地发生在刺激的储层区域,尤其是在停止液体注入后。然而,这些地震性模式的病因机制仍然高度难以捉摸。在这里,我们确定了可以通过对天然裂缝花岗岩储层的液压刺激进行完全耦合的液态力学模拟来解释EGS部位延迟地震性的组合。该模型包括一个稀疏的网络,该网络与附近的,非常面向的断层相互作用,该网络与长而变化的裂缝相互作用。结果表明,裂缝的存在在流场和岩石变形中引入了显着的非线性,并显着扩大了受液体注入影响的岩石体积。首先,受刺激的断裂网络提供了高度可渗透的吊带,用于在长时间的情况下传达较高的孔隙压力。第二,裂缝的各向异性膨胀会产生剪切应力,几乎在整个储层上迅速传播。孔隙压力和压力扰动不仅会导致沿裂缝滑动,在注射过程中诱导(微)地震性,而且会影响附近断层的稳定性,这可能不一定会在注射过程中加压。转移的毛弹性应力可以增加或减少沿不同断层段的滑动趋势。然而,当注射后几个月后,当临时断层渗透率演化调节的渐进孔压扩散后,断层才能重新激活。我们还发现,地震性的时空演化在很大程度上取决于附近的断层方向,水力力学特性以及与断裂网络的液压连接以及应力的初始状态。我们得出的结论是,在注射过程中和注射后的准确地下表征和连续监测应允许管理注射诱导的地震性带来的风险,并安全地解锁了清洁和可持续的地热能的巨大潜力。
摘要:背景:骨质疏松症 (OP) 是一种影响全球老年人的常见骨病。确定可靠的诊断标记对于 OP 的临床管理至关重要。方法:利用 GEO 数据库 (GSE35959),我们获取了 OP 和正常样本的表达谱。通过 STRING、GEO2R 和 Cytoscape 确定差异表达基因 (DEG) 和中心基因。使用 miRTarBase、miRDB 和 MiRcode 数据库构建竞争内源 RNA (ceRNA) 网络。通过 DAVID 进行基因本体论 (GO) 和 KEGG 通路富集分析。验证涉及来自巴基斯坦人群的临床 OP 样本,使用实时定量聚合酶链反应 (RT-qPCR) 评估中心基因表达。结果:在 GSE35959 中,OP 和正常样本之间共鉴定出 2124 个差异表达基因 (DEG)。这些 DEG 中选定的枢纽基因是剪接因子 3a 亚基 1 (SF3A1)、Ataxin 2 样 (ATXN2L)、热休克蛋白 90 Beta 家族成员 1 (HSP90B1)、分化簇 74 (CD74)、DExH-Box 解旋酶 29 (DHX29)、ALG5 多萜醇磷酸 β-葡萄糖基转移酶 (ALG5)、NudC 结构域含 2 (NUDCD2) 和 Ras 相关蛋白 Rab-2A (RAB2A)。在巴基斯坦 OP 患者中对这些基因的表达验证显示,在 OP 患者中,SF3A1、ATXN2L 和 CD74 显着上调,而 HSP90B1、DHX29、ALG5、NUDCD2 和 RAB2A 显着 (P <0.05) 下调。受试者工作特征(ROC)分析显示这些枢纽基因对OP的诊断准确率较高。枢纽基因的ceRNA网络分析揭示了一些重要的枢纽基因调控miRNA和lncRNA。通过KEGG分析发现,枢纽基因在N-糖生物合成、甲状腺激素合成、IL-17信号通路、前列腺癌、AMPK信号通路、剪接体、雌激素信号通路、流体剪切应力和动脉粥样硬化等通路中富集。结论:本研究鉴定出的8个枢纽基因可以可靠地区分OP患者和正常个体,这可能为OP的诊断研究提供新的思路。
使用机器学习方法对路面大头钉的电磁特性进行分类,grégoryandreoli*,cerema ouest / aan / entum amine ihamine,University Gustave Eiffel / lames / lames rakeeb jauber jaufer jaufer,cerema ouest oeema ouest / aan / aan / aan / aan aan / andum shreedhar savema lan earma aan erema erea a a david guilbert,david david guilbert,david Nguyen,大学古斯塔夫·埃菲尔(Gustave Eiffel当今最常用的是。高分辨率方法能够检测深度,裂纹或明显的脱束,但对于识别地下毫米界面(例如粘性涂层),它们仍然有限且不强大。在本文档中,我们建议将雷达方法与两级SVM监督学习相结合。第一次对古斯塔夫·埃菲尔大学(Gustave Eiffel University)(法国南特)疲劳旋转木马的试验使我们能够验证我们开发的数值方法。介绍21百万,这就是国际能源局(IEA)的数据,应添加多少公里的新道路基础设施,以确保全球运输直到2050年。为了防止交通密度不断增长引起的降解,我们必须能够提前评估基础设施中出现结构性或物质失败的可能性(khweir。和Fordyce,2003年)。为了最大程度地提高其耐用性,法国的路面结构使用接口钉涂层技术。这有助于完整的多层结构充当一个整体块,它可以最大程度地减少机械应变(剪切应力,单调扭曲等),从而最大程度地减少了道路结构的降解(Wang and Zhong,2019;Diakhaté等人。,2008)。多样化的技术有助于评估道路状态:破坏性的技术,通常必须钻出人行道的核心,并且必须在实验室和非破坏性的物理和化学特性中研究物理和化学特性,通常使用电磁波和机械波传播。在大多数情况下,粘性涂层是一种沥青乳液,机械地扩散,这使其连续且规则。仅在破裂阶段(乳液中存在的水的蒸发)才增加了磨损的过程,从而增加了层之间的粘附力。直到今天,我们唯一可以保证沥青乳液的同质应用是工作机器的性能。
纤维因其优异的拉伸性、透气性和高孔隙率而在诸多领域具有广泛的应用前景。人们已经开发出许多方法来使用各种材料来生产合成纤维,其中,静电纺丝是一种广泛使用且有效的生产微纳米级纤维(纤维直径范围从 2 纳米到几微米)的方法[5]。除静电纺丝外,大多数其他传统的纤维生产方法,如湿纺和干纺、拖曳纺丝、凝胶纺丝和三维 (3D) 打印,都仅依靠机械拉伸或剪切应力来拉伸和变细纤维射流;因此,它们通常很难在不导致纤维断裂的情况下生产出纤维直径小于 10 毫米的超薄纤维[6]。静电纺丝利用强静电力将聚合物溶液或熔体拉伸成细射流,最终形成微/纳米纤维沉积。这种现象最早在一个多世纪前被发现和描述 [ 7 ],但直到 20 世纪初,“静电纺丝”一词才正式提出 [ 8 ]。从那时起,关于这种用途广泛且简单的纤维生产技术的研究一直在显着增长 [ 9 ]。随着材料科学和纳米技术的最新发展,新材料已与静电纺丝技术相结合,例如导电材料、能量产生材料以及生物相容性和生物活性材料。利用这些新材料功能化的电纺微/纳米纤维不仅保留了超薄纤维的物理优点,例如高长宽比、柔韧性、方向性和高孔隙率,而且还开辟了新颖的纤维和纺织设备配置和应用。例如,压电聚合物的使用使一系列本质上灵活和透明的能量收集器和自供电传感器成为可能[10,11]。用聚合物和金属或陶瓷制成的复合材料纤维在新型传感和光电设备中显示出良好的应用潜力[12,13]。同时,这些新兴应用要求对电纺纤维的形貌和图案进行更精确、更方便和定制化的控制。因此,人们努力改进和调整静电纺丝装置和工作条件,并将纤维纺丝与其他先进加工技术(如 3D 打印和微流体)相结合。本章旨在全面描述静电纺丝的最新创新和技术进步。为了让不熟悉静电纺丝的读者有效地阅读本章,我们在开头简要介绍了静电纺丝的物理原理和基本装置设计,然后讨论了