注射引起的地震性已成为广泛部署增强的地热系统(例如)最关键的挑战之一。尤其是,一些EGS开发项目导致大型,破坏性的地震出乎意料地发生在刺激的储层区域,尤其是在停止液体注入后。然而,这些地震性模式的病因机制仍然高度难以捉摸。在这里,我们确定了可以通过对天然裂缝花岗岩储层的液压刺激进行完全耦合的液态力学模拟来解释EGS部位延迟地震性的组合。该模型包括一个稀疏的网络,该网络与附近的,非常面向的断层相互作用,该网络与长而变化的裂缝相互作用。结果表明,裂缝的存在在流场和岩石变形中引入了显着的非线性,并显着扩大了受液体注入影响的岩石体积。首先,受刺激的断裂网络提供了高度可渗透的吊带,用于在长时间的情况下传达较高的孔隙压力。第二,裂缝的各向异性膨胀会产生剪切应力,几乎在整个储层上迅速传播。孔隙压力和压力扰动不仅会导致沿裂缝滑动,在注射过程中诱导(微)地震性,而且会影响附近断层的稳定性,这可能不一定会在注射过程中加压。转移的毛弹性应力可以增加或减少沿不同断层段的滑动趋势。然而,当注射后几个月后,当临时断层渗透率演化调节的渐进孔压扩散后,断层才能重新激活。我们还发现,地震性的时空演化在很大程度上取决于附近的断层方向,水力力学特性以及与断裂网络的液压连接以及应力的初始状态。我们得出的结论是,在注射过程中和注射后的准确地下表征和连续监测应允许管理注射诱导的地震性带来的风险,并安全地解锁了清洁和可持续的地热能的巨大潜力。
主要关键词