量子力学改变了我们对物理世界的看法,在过去的二十年中,物理系统的量化特征也已成为技术不同分支的资源[1,2]。尤其是,当计量学遇到量子机械时,就可以使用整个新的新特征来提高物理测量的精度,并构想新颖的量子增强方案以表征信号和设备[3-5]。相对论也改变了物理的范例,并发现了相关的技术应用[6]。因此,是否可以共同利用相对论和量子机械性能以提高物理测量的精度。在本文中,我们遵循了这一想法,并证明了范式相对论特征,重力时间扩张确实可能代表了可以与量子叠加一起使用的资源,以证明重力常数的估计或其变化。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
版权所有©2024 Fortinet,Inc。保留所有权利。fortinet®,fortigate®,forticare®和fortiguard®以及某些其他商标是Fortinet,Inc。的注册商标,此处的其他Fortinet名称也可以注册和/或Fortinet的普通法商标。所有其他产品或公司名称可能是其各自所有者的商标。的性能和其他指标,实际绩效和其他结果可能会有所不同。网络变量,不同的网络环境和其他条件可能会影响性能结果。Nothing herein represents any binding commitment by Fortinet, and Fortinet disclaims all warranties, whether express or implied, except to the extent Fortinet enters a binding written contract, signed by Fortinet's General Counsel, with a purchaser that expressly warrants that the identified product will perform according to certain expressly-identified performance metrics and, in such event, only the specific performance metrics expressly identified in such binding written contract shall be binding on Fortinet。为了绝对清晰,任何此类保修都将仅限于与Fortinet内部实验室测试相同的理想条件下的性能。Fortinet完全根据明示或暗示的任何盟约,代表和保证。Fortinet保留更改,修改,转让或以其他方式修改本出版物的权利,恕不另行通知,最新版本的出版物应适用。
寻找与目标靶点形成共价键的酶抑制剂是药物开发中一个越来越受欢迎的焦点。然而,在评估其时间依赖性抑制特性以及与文献中报道的值建立相关性时,出现了挑战。鉴于肿瘤学中表皮生长因子受体 (EGFR) 酪氨酸激酶受到广泛关注,以及共价 EGFR 抑制剂的多种结构和结合模式,本观点旨在探索在测量此类药物的动力学参数时出现的各种广泛相关因素。对几项研究的回顾表明,不同的文献效力值要求研究人员包括适当的参考分子和一致的底物条件,以保持实验一致性和适当的基准。调查了常见缓冲条件和化合物液体处理对共价抑制剂效力的影响,强调了在进行这些测定时多个实验变量的重要性。此外,在评估抑制剂针对 EGFR 突变体而非野生型 (WT) 的选择性效力时,由于 ATP 底物结合亲和力不同,最好考虑真实效力的比率。本文介绍的概述虽然最直接适用于酪氨酸激酶抑制剂领域,但可广泛用于抑制剂评估,为设计和验证下一代共价抑制剂的生化分析提供指导性见解。简介
量子力学改变了我们看待物理世界的方式。在过去的二十年里,物理系统的量子特征也成为不同技术分支的资源[1,2]。特别是当计量学遇到量子力学时,一系列新特征被用来提高物理测量的精度,并构想出新的量子增强协议来表征信号和设备[3-5]。相对论也改变了物理学的范式,并找到了相关的技术应用[6]。因此出现了一个问题:是否可以联合利用相对论和量子力学特征来提高物理测量的精度。在本文中,我们遵循这一想法并证明一个典型的相对论特征——引力时间膨胀,确实可以代表一种资源,它可以与量子叠加一起使用,以提高估计引力常数或其变化的精度。
5 https://faraday.ac.uk/wp- content/uploads/2019/10/191025_Rapid_market_assessment_of_storage_in_developing_countries.pdf 6 https://about.bnef.com/blog/net-zero-road-transport-by-2050-still-possible-as-electric-vehicles-set-to-quintuple-by-2025/ 7 https://faraday.ac.uk/wp-content/uploads/2019/10/191025-Rapid-market-assessment-of-storage-in-developing- countries.pdf 8 https://www.energy-storage.news/bloombergnef-predicts-30-annual-growth-for-global-energy-storage-market-to-2030/