为了竞争生物系统的能力,必须在合成系统中实现对化学反应性的时间控制。大多数合成的自组装过程旨在生成具有高热力学或动力学稳定性的有序结构 - 这些结构处于能量景观的全球最小值或被困在局部最小值中。1通过使用外部刺激(例如pH,光或化学物种添加)来修改能量景观以创建新的最低限度,这些结构可以被迫重新排列新的最小值,从而产生刺激性反应性的自组装过程。2当这种方法产生高功能性系统时,3它要求操作员在适当的时间进行相反的刺激,以在其不同的功能状态之间来回切换系统。为了克服这一局限性并受到生物系统的启发,1 B,4化学家耦合了自组装和耗能的过程,以便自组装过程可以通过光,热或化学物质的形式通过An in的能量的An and and and ux来暂时表达不同的结构。1 b,5这些所谓的“转移自组装”需要持续的能量输入才能持续时间。如果停止了能源供应,这些结构拆除,它们的组件被初始
遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA
超级电容器(SC)被评为最重要的效果设备,桥接了可再生能源的生产和组合。为了满足不断增长的能源需求,必须以高能量密度,可接受的价格和长期稳定性的优点发展高性能的SC是必不可少的。本评论重点介绍了针对高性能SC的最新电极系统中基于卤素的功能化化学工程的最新进展,主要是指F,CL,BR和I元素的掺杂和装饰策略。由于电负性和原子半径的差异,每个卤素元件的功能化赋予了基板材料具有不同的理化特性,包括能量带隙结构,孔隙度分布和表面效果。通过精确控制离子吸附和电子结构,卤素嵌入到宿主材料中的原理。,还讨论了关于卤素功能化的未来挑战的重要观点。这项工作旨在加深对基于卤素的功能化策略的理解,以激励进一步研究高性能SCS的发展,并且还为探索用于电化学能源存储的新材料修改方法提供了前景。©2022由Elsevier B.V.代表中国化学学会和中国医学科学院Materia Medica研究所出版。
图 3 | MCF-7 细胞的 SIM 成像。a,未经处理的细胞和用 cal@(DCA 5 - UiO-66) 和 cal-TPP@(DCA 5 -UiO-66) 处理 8 小时的细胞的图像;线粒体为红色,MOF 为绿色,细胞核为蓝色;白色箭头表示线粒体。b,使用 Cell Profiler 软件显示线粒体形状分析的图像。上行,未经处理的细胞;下行,与 cal-TPP@(DCA 5 -UiO-66) 孵育 8 小时后的细胞。c,不同处理对线粒体偏心率的影响。结果显示平均偏心率至少为 200 个线粒体。误差线表示平均值的标准误差。使用单因素方差分析和 Tukey 多重比较检验来评估统计学显着性。
摘要:玄武岩纤维(BF)是近年来迅速崛起的一种高性能纤维,具有高强度、高模量等特点,被广泛应用于结构工程领域。制备BF基复合材料首先需要对BF进行表面改性,以改善BF与树脂基体的界面结合力。随着BF表面改性研究的不断深入,研究者发现通过特殊的表面改性可获得BF基功能化复合材料,该领域近年来受到了广泛的关注。本文从电磁屏蔽、水处理、催化功能、防火隔热等方面对近年来BF基功能复合材料的研究工作进行了总结和评述。最后,本文总结了BF表面改性的方法,并提出了BF基功能复合材料的发展趋势和方向。
尽管近年来乳腺癌的发病率有所下降(1990 年至 2013 年间下降了 37%)1,2 ,但它仍然是女性死亡的第二大原因。根据癌症统计数据 3 ,仅在美国,2015 年就登记了 231,840 例女性乳腺癌新病例,其中 40,290 名患者死亡。目前可用的治疗方案包括手术切除、辅助放射治疗、辅助化疗和激素治疗。化疗涉及应用小分子药物,例如烷化剂、抗代谢物、蒽环类药物和拓扑异构酶抑制剂。随着化疗药物的长期暴露,癌细胞对单一药物或一类药物产生耐药性,并对几种结构和功能上不相关的抗肿瘤药物 4 表现出交叉耐药表型 5 。这种获得性耐药现象,称为多药耐药性或MDR,是迄今为止癌症治疗面临的一大挑战。
设计,优化和制造。数值技术,例如有限元分析,验收动力学,第一原理计算和多尺度建模,可以有效地预测机构属性并优化设计。与此同时,人工智能和大数据分析可以通过机器学习发现新材料和反向设计。智能手段与自适应控制系统相结合,实现了生产过程的自动化和实时优化,从而提高了制造效率和精度。尽管数据和计算成本不足,但随着技术的进步,材料科学却朝着更高的精度和自动化方向发展。
网络功能虚拟化 (NFV) 是指在虚拟化 IT 基础架构中将网络功能作为软件化的虚拟网络功能 (VNF) 运行的过程。目前,一些电信服务提供商正从这一概念中受益,因为它能够更快地引入新的网络服务,从而满足不断变化的需求。紧随云服务提供商最初采用的趋势,电信服务提供商也正在将 VNF 分解为微服务(𝜇 服务)。然而,能够管理大量多样化和敏感的网络功能的𝜇基于服务的架构需要新的基于人工智能 (AI) 的方法来应对𝜇基于服务的 NFV 范式的复杂性。本文重点介绍如何使用可解释的人工智能 (XAI) 逐步迁移到 NFV 中的𝜇基于服务的架构。本文首先确定了 XAI 将 NFV 架构转变为 μ基于服务的架构的必要性,然后描述了我们的一些研究目标。之后,我们提出了初步方法和长期愿景。
靶向药物输送纳米系统的开发是一个具有挑战性的问题,旨在高效地运输生物活性分子并在患病组织的微环境中实现位点特异性释放。几年来,我们一直对修饰抗癌药物和神经保护药物以获得自组装纳米粒子 (NP) 感兴趣,从而提高其治疗效率。尽管传统的基于载体的 NP 在癌症治疗领域已显示出卓越的进展和前景,但仍需要进一步改进。例如,这种基于载体的 NP 的载药量通常较低(通常 <10 wt%),这大大降低了药物在肿瘤内的有效积累和释放药物的治疗效率。 1 此外,与此同时,由于复杂的制备程序和过度的化学处理,大多数报道的纳米载体在药物上是惰性的,这些载体的应用引发了人们对其代谢、生物降解和潜在的长期毒性以及严重炎症的担忧。 2 正因为如此,自组装纳米粒子是开发 NPs 的一种非常理想的替代策略,它本身携带治疗分子,而不是使用其他惰性载体。事实上,它们具有:(1)高载药能力;(2)由于纳米结构由定制的单个分子共轭物形成,因此可以精确控制药物负载;(3)通过简单优化分子设计即可轻松调整 NPs 的物理化学特性;
功能性混合无机纳米材料因其在纳米技术应用中的表现而受到了极大的关注。[1]将多个纳米组分组合为杂种结构的组合产生了与成分不同的新集体特性。[1]杂交纳米结构不仅具有多功能特性,而且还可能引起界面粒子 - 粒子 - - 粒子相互作用引起的协同特性。[2]两个或多个组件的耦合产生杂交纳米结构,该纳米结构允许电子传输跨连接以改变局部电子结构。因此,粒子表面上的工程化学反应性取决于内部和外部接口的能力以及沉积颗粒在纳米支持上的粒径分布。[1,3]这些行为使它们通常在太阳能转化,催化和潜在的生物医学方法中具有潜在的应用,用于药物递送,生物成像和癌症治疗。[4-6]