氧化石墨烯(GO)由于其机械,光学,电气和化学性质而引起了科学界的显着关注。本综述概述了综合方法进行功能化,包括涉及有机分子共价和非共价键的合成方法。在对这一领域的新贡献中,特别强调通过环氧环开放的功能化,这是一个研究和理解的主题。我们首先提供了石墨烯氧化石墨烯的基本结构和特性的概述。然后,我们探索用于使氧化石墨烯官能化的各种方法,并指出这些反应的复杂性,这些反应有时以非特定方式发生。但是,有一些针对性功能化的策略。此外,我们通过环氧基团对共价官能化进行了批判性分析,在选择反应培养基时表明要考虑的重要方面。碱性环境似乎有利于这种反应,并且在功能化反应中使用碱性pH的优点和缺点尚无共识。我们还展示了一些挑战,这些挑战涉及功能化的表征和确认,主要是在基础平面中,并且我们展示了可以在未来的研究中探索的表征技术的进步。最后,提出了一些当前的挑战和未来的研究指示,以促进该领域的发展。
映射人蛋白质组中所有蛋白质的可辅助性或潜在的可药用性是基于质谱的共价化学蛋白质组学的核心目标。实现这一雄心勃勃的目标需要高吞吐量和高覆盖样品制备以及液相色谱串联质谱分析,以进行数百至数千种反应性化合物和化学探针。在此规模上进行化学蛋白质组学筛选从实现增加样品吞吐量的技术创新中有益。在这里,我们通过建立用于同位素标记的蛋白质组学串联质量标签(SCIP-TMT)蛋白质组学平台的基于硅烷的可切合连接器来实现这种愿景,该平台通过早期样品池的区别,从而增加样品制备吞吐量。SCIP-TMT配对一种自定义兼容的SCIP捕获试剂,该试剂易于使用市售的TMT试剂以高产量功能化。一组SCIP-TMT的合成和基准测试显示样品制备时间的大幅度减少,高覆盖范围和高精度定量。通过筛选一组聚焦的四个半胱氨酸反应性电力,我们证明了SCIP-TMT对化学蛋白质组靶狩猎的实用性,从而确定了789个总配体半胱氨酸。以其与已建立的富集和量化协议的兼容性区分,我们预计SCIP-TMT很容易转化为广泛的共价化学蛋白质组应用。
最近的研究表明,使用从不同研究机构或地点收集的神经图像数据可能会产生额外的源依赖性,从而影响整体统计能力。可以使用数据协调方法缓解此问题。最近,ComBat 方法已成为各种神经图像模式的普遍采用。虽然开放的神经成像数据集变得越来越普遍,但由于各种原因,大量数据仍然无法共享。此外,当前的方法需要将所有数据移动到一个中心位置,这需要额外的资源并创建相同数据集的冗余副本。为了解决这些问题,我们提出了一种分散的协调方法,该方法不会创建原始数据集的冗余副本,并单独对数据集执行远程操作而不共享任何单个主题数据,从而确保一定程度的隐私并减少监管障碍。我们提出了一种称为“分散式 ComBat”的新方法,它可以单独协调数据集而不合并数据集。我们通过以分散的方式协调来自两项创伤性脑损伤研究的功能网络连接数据集来测试我们的模型。此外,我们还使用模拟来分析当数据收集站点数量增加时我们的模型的性能和可扩展性。我们将输出与集中式 ComBat 进行比较,并表明所提出的方法产生了类似的结果,从而提高了功能网络连接分析的灵敏度并验证了我们的方法。模拟表明,我们的模型可以根据需求轻松扩展到更多数据集。总之,我们相信这提供了一个强大的工具,进一步补充了开放数据并允许集成公共和私人数据集。
1 药学科学实验室,科学与工程学院,奥博学术大学,20520 图尔库,芬兰;nprabhak@abo.fi(NP);didem.sen.karaman@ikc.edu.tr (D.¸SK);eudaldcm@gmail.com (EC) 2 图尔库生物科学中心,图尔库大学和奥博学术大学,20520 图尔库,芬兰;jorome@utu.fi 3 图尔库大学医学院生物医学研究所,20520 图尔库,芬兰;markus.peurla@utu.fi 4 转化癌症医学研究项目,赫尔辛基大学医学院,00014 赫尔辛基,芬兰;vadim.lejoncour@helsinki.fi(VLJ); pirjo.laakkonen@helsinki.fi(PL) 5 伊兹密尔 Kâtip Çelebi 大学工程与建筑学院生物医学工程系,35620 伊兹密尔,土耳其 6 五邑大学生物技术与健康科学学院,江门 529020,中国 7 实验动物中心,HiLIFE—赫尔辛基生命科学研究所,赫尔辛基大学,00014 赫尔辛基,芬兰 * 通信地址:jukwes@utu.fi(JW);jerosenh@abo.fi(JMR) † 这些作者对这项工作做出了同等贡献。
纳米技术越来越多地用于抗癌治疗,从而提高了治疗有效性,同时最大程度地减少了不良影响。无机纳米颗粒(INP)是普遍的纳米载体,适用于广泛的抗癌应用,包括治疗剂,成像,靶向药物递送和治疗学,因为它们具有优质的生物相容性,独特的光学特性,独特的光学特性以及通过多功能表面功能化修饰的能力。在过去的几十年中,在这个新兴的免疫治疗领域中,INP的高适应性使它们成为肿瘤免疫疗法和联合免疫疗法的良好携带者选择。肿瘤免疫疗法需要针对肿瘤位置或免疫器官的免疫调节疗法的靶向输送,以引起免疫细胞并诱导肿瘤特异性免疫反应,同时调节免疫稳态,尤其是切换肿瘤免疫抑制微抑制微环境。本评论探讨了各种INP设计和配方,以及它们在肿瘤免疫疗法和联合免疫疗法中的就业。我们还引入了利用表面工程策略来创建多功能INP的详细演示。生成的INP证明了刺激和增强免疫反应,特定靶向以及调节癌细胞,免疫细胞及其常驻微环境的能力,有时以及成像和跟踪能力,暗示它们在多任务中的免疫疗法中的潜力。此外,我们讨论了肿瘤治疗中基于INP的组合免疫疗法的承诺。
企划管理部 IoT应用推进部 社会基础设施解决方案本部 金融及企业解决方案本部 网络系统本部 防卫系统本部 IoT平台本部 系统中心 基础技术中心 信息通信本庄工厂 信息通信沼津工厂
3月23日,由Qiyuan Green Power,Shanghai Boonray Intellighent Technology Co.,Ltd。,Top Gear等共同开发的无人电池交换矿业卡车,并配备了由上海Boonray Intellray Intellighent Technology Co.,Ltd.,Ltd.,Ltd。目前,它已在South Cement的矿山中进行了方案终端申请测试。根据现场测试,“电牛”可以将二氧化碳的排放量减少至少260吨,从而节省至少20万卢比的劳动力成本。
摘要:多功能玻璃因其出色的机械、光学、热学和化学性能组合而在许多成熟和新兴行业中很常见,例如微电子、光伏、光学元件和生物医学设备。通过纳米/微图案化进行表面功能化可以进一步增强玻璃的表面特性,将其适用性扩展到新的领域。尽管激光结构化方法已成功应用于许多吸收材料,但透明材料在可见激光辐射下的可加工性尚未得到深入研究,尤其是对于生产小于 10 µ m 的结构。在这里,基于干涉的光学装置用于通过可见光谱中 ps 脉冲激光辐射的非线性吸收直接对钠石灰基板进行图案化。制作的线状和点状图案具有 2.3 至 9.0 µ m 之间的空间周期和高达 0.29 的纵横比。此外,在这些微结构中可以看到特征尺寸约为 300 nm 的激光诱导周期性表面结构 (LIPSS)。纹理化表面显示出显著改变的特性。也就是说,经过处理的表面具有增强的亲水行为,在某些情况下甚至达到超亲水状态。此外,微图案充当浮雕衍射光栅,将入射光分成衍射模式。优化了工艺参数,以产生具有超亲水特性和衍射效率超过 30% 的高质量纹理。
信息和通信技术在近几十年来的发展使得这种技术成为可能。今天我们可能面临着类似的情况,微电子技术即将用于生物系统,但半导体与生物环境之间的信号交换仍然受富含缺陷的界面的影响。半导体技术的快速发展也体现在新型微型生物传感器 [1–3] 上,微技术与纳米技术大大提高了生物传感器的灵敏度和性能。纳米生物传感器因较高的表面积与体积比 [4] 而受益于高效的转导机制,并且由于较低的分数维数,理论上分析物扩散速度更快。 [5] 此外,生物相容性、标准化制造工艺和广泛可用的生物功能化协议使纳米硅在许多方面成为生化传感的理想基材。由于硅器件的小型化,表面特性和表面功能化变得越来越重要,通过它们可以调整半导体器件的特性。对各种硅基底(如晶体硅、多孔硅或具有明确有机膜的纳米线)进行化学功能化,可能会显著改变其表面润湿性,[6] 可能会产生掺杂效应,[7] 并允许将分子线集成到传统半导体技术中。[8] 虽然微型硅基底的功能化提供了许多机会来根据您的需求调整其特性,但将生物分子固定在纳米级结构上有时可能具有挑战性。 这可能是由于生物分子在多孔基底的纳米孔中的扩散有限,或者在具有纳米级曲率的表面上不太容易形成明确界定的分子层。 [9]