Loading...
机构名称:
¥ 2.0

信息和通信技术在近几十年来的发展使得这种技术成为可能。今天我们可能面临着类似的情况,微电子技术即将用于生物系统,但半导体与生物环境之间的信号交换仍然受富含缺陷的界面的影响。半导体技术的快速发展也体现在新型微型生物传感器 [1–3] 上,微技术与纳米技术大大提高了生物传感器的灵敏度和性能。纳米生物传感器因较高的表面积与体积比 [4] 而受益于高效的转导机制,并且由于较低的分数维数,理论上分析物扩散速度更快。 [5] 此外,生物相容性、标准化制造工艺和广泛可用的生物功能化协议使纳米硅在许多方面成为生化传感的理想基材。由于硅器件的小型化,表面特性和表面功能化变得越来越重要,通过它们可以调整半导体器件的特性。对各种硅基底(如晶体硅、多孔硅或具有明确有机膜的纳米线)进行化学功能化,可能会显著改变其表面润湿性,[6] 可能会产生掺杂效应,[7] 并允许将分子线集成到传统半导体技术中。[8] 虽然微型硅基底的功能化提供了许多机会来根据您的需求调整其特性,但将生物分子固定在纳米级结构上有时可能具有挑战性。 这可能是由于生物分子在多孔基底的纳米孔中的扩散有限,或者在具有纳米级曲率的表面上不太容易形成明确界定的分子层。 [9]

无氧化物硅表面的功能化及其在生物传感中的应用

无氧化物硅表面的功能化及其在生物传感中的应用PDF文件第1页

无氧化物硅表面的功能化及其在生物传感中的应用PDF文件第2页

无氧化物硅表面的功能化及其在生物传感中的应用PDF文件第3页

无氧化物硅表面的功能化及其在生物传感中的应用PDF文件第4页

无氧化物硅表面的功能化及其在生物传感中的应用PDF文件第5页

相关文件推荐