摘要。深部脑刺激 (DBS) 的术前路径规划是一个多目标优化问题,即在多个放置约束之间寻找最佳折衷点。它的自动化通常通过使用聚合方法将问题转变为单目标来解决。然而,尽管这种方法很直观,但它以无法找到所有最优解而闻名。在本文中,我们引入了一种基于多目标优势的 DBS 路径规划方法。我们将它与经典的多个约束的聚合加权和以及由神经外科医生对 14 个 DBS 病例进行的回顾性研究的手动规划进行了比较。结果表明,基于优势的方法优于手动规划,并且与传统的加权和方法相比,它涵盖了更多相关的最佳切入点选择,因为传统的加权和方法会丢弃外科医生可能喜欢的有趣解决方案。
单细胞RNA测序(SCRNA-SEQ)已成为理解细胞异质性的强大工具,在分子调节分析中提供了前所未有的分辨率。现有的细胞类型注释的监督学习方法主要利用SCRNA-SEQ数据中的基因表达式。尽管某些方法包含了基因相互作用网络信息,但它们无法使用细胞特异性基因关联网络。此限制忽略了单个细胞内的独特基因相互作用模式,可能会损害细胞类型分类的准确性。我们介绍了WCSGNET,这是一种基于图神经网络的算法,用于自动细胞类型注释,利用加权细胞特异性网络(WCSN)。这些网络是基于高度可变基因构建的,并固有地捕获基因表达模式和基因关联网络结构特征。广泛的实验验证表明,WCSGNET始终达到卓越的细胞类型分类性能,在最佳的方法中排名,同时保持各种数据集的稳健稳定性。值得注意的是,WCSGNET在处理不平衡数据集方面具有明显的优势,在这些挑战性的情况下表现优于现有方法。复制这项工作的所有数据集和代码都存放在GitHub存储库中(https://github.com/yi-elen/wcsgnet)。
脑肿瘤是儿童最常见的实体肿瘤之一,也是儿童癌症相关死亡的原因(1)。脑肿瘤主要根据组织发生原理进行分类,该原理允许基于与几种假定的起源细胞及其假定的分化阶段的微观相似性对肿瘤进行分类(2)。髓母细胞瘤是一种常见的恶性脑肿瘤,发生于儿童期,占儿童脑肿瘤的 15- 20%(3, 4)。肿瘤通常发生在小脑,在三分之一的病例中常侵入第四脑室,并发展为整个脊髓转移(5)。相关症状不明显,诊断通常会延迟。然而,70% 至 80% 的病例在转移前被诊断出来,而 20% 至 30% 属于高危人群(6)。室管膜瘤是起源于中枢神经系统 (CNS) 的罕见肿瘤。世界卫生组织 (WHO) 已根据组织学将该病分为三类(I、II 或 III),其中
临床数据仓库 (CDW) 包含数百万患者的医疗数据,为开发计算工具提供了绝佳机会。MRI 对图像采集过程中的患者运动特别敏感,这将导致重建图像中出现伪影(模糊、重影和振铃)。因此,CDW 中的大量 MRI 因被这些伪影破坏而无法使用。由于扫描次数太多,无法手动检测,因此有必要开发一种工具来自动排除带有运动的图像,以充分利用 CDW。在本文中,我们提出了一种 CNN 来自动检测 3D T1 加权脑部 MRI 中的运动。我们的迁移学习方法基于合成运动生成,包括两个步骤:使用合成运动对研究数据进行预训练,然后进行微调步骤,将我们的预训练模型推广到临床数据,依靠 5500 张图像的手动标记。目标是 (1) 能够排除具有严重运动的图像,(2) 检测轻微的运动伪影。我们的方法在第一个目标上实现了出色的准确率,平衡准确率几乎与注释者的准确率相似(平衡准确率 > 80%)。然而,对于第二个目标,其表现较弱,远低于人类评分者。总体而言,我们的框架将有助于在医学成像中利用 CDW,并强调对基于研究数据训练的模型进行临床验证的重要性。
摘要 磁共振 (MR) 成像是一种广泛使用的医学成像技术,可生成人体的详细解剖图像。MR 图像的分割在医学图像分析中起着至关重要的作用,因为它可以对各种疾病和状况进行准确的诊断、治疗计划和监测。由于缺乏足够的医学图像,实现精确的分割具有挑战性,尤其是在应用深度学习网络的情况下。这项工作的目的是研究从 T1 加权 (T1-w) 到 T2 加权 (T2-w) MR 序列的迁移学习,以最少的计算资源增强骨骼分割。利用基于激励的卷积神经网络,提出了四种迁移学习机制:无微调的迁移学习、开放微调、保守微调和混合迁移学习。此外,提出了一种使用 T2-w MR 作为基于强度的增强技术的多参数分割模型。这项研究的创新之处在于混合迁移学习方法,该方法克服了过度拟合问题,并以最少的计算时间和资源保留了两种模态的特征。使用 14 张临床 3D 脑 MR 和 CT 图像评估分割结果。结果表明,混合迁移学习在骨分割方面在性能和计算时间方面更胜一筹,DSC 为 0.5393 0.0007。虽然基于 T2-w 的增强对 T1-w MR 分割的性能没有显著影响,但它有助于改进 T2-w MR 分割并开发多序列分割模型。
临床数据仓库 (CDW) 包含数百万患者的医疗数据,为开发计算工具提供了绝佳的机会。磁共振图像 (MRI) 对图像采集过程中的患者运动特别敏感,这将导致重建图像中出现伪影(模糊、重影和振铃)。因此,CDW 中的大量 MRI 被这些伪影破坏,可能无法使用。由于扫描次数太多,无法手动检测它们,因此有必要开发工具来自动排除(或至少识别)带有运动的图像,以充分利用 CDW。在本文中,我们提出了一种从研究到临床数据的新型迁移学习方法,用于自动检测 3D T1 加权脑 MRI 中的运动。该方法包括两个步骤:使用合成运动对研究数据进行预训练,然后进行微调步骤,以将我们的预训练模型推广到临床数据,这依赖于 4045 张图像的标记。目标是 (1) 能够排除具有剧烈运动的图像,(2) 检测轻微的运动伪影。我们的方法在第一个目标上实现了出色的准确率,平衡准确率几乎与注释者的准确率相似(平衡准确率 > 80 %)。然而,对于第二个目标,其表现较弱,远低于人类评分者。总体而言,我们的框架将有助于在医学成像中利用 CDW,并强调对基于研究数据训练的模型进行临床验证的重要性。
摘要。动态治疗方案(DTR)是一种提供精确药物的方法,该方法使用患者特征来指导治疗方法以实现最佳健康结果。已经提出了许多用于DTR估计的方法,包括动态加权的普通最小二乘(DWOLS),这是一种基于回归的方法,在易于实现的分析框架内具有双重鲁棒性来模拟模型错误指定。最初,DWOL方法是在连续结果和二元治疗决策的假设下开发的。是在临床研究的激励下,随后的理论进步扩大了DWOLS框架,以解决各种结果类型的二元,连续和多酸性处理,包括二进制,连续和生存类型。但是,某些方案仍未开发。本文总结了DWOLS方法的扩展和应用的最后十年,对原始DWOLS方法及其扩展进行了全面而详细的审查,并突出了其多样化的实际应用。我们还探讨了已经解决了与DWOL实施相关的挑战的研究,例如模型验证,可变选择和处理测量错误。使用模拟数据,我们提出了数值插图以及在R环境中的分步实现,以促进对基于DWOL的DTR估计方法的更深入的了解。
Mostefa Ben Naceur、Mohamed Akil、Rachida Saouli、Rostom Kachouri。使用重叠块和多类加权交叉熵,通过基于深度学习的选择性注意实现全自动脑肿瘤分割。医学图像分析,2020 年,�10.1016/j.media.2020.101692�。�hal-02533454�
考虑到1,2,3-三唑结构的有效抗弹性特性,以及2H-1,4-苯并毒素3(4H)在开发神经退行性疾病的治疗方法中的广泛使用,一系列2H-1,4-苯唑 - 3(4H) - 单位衍生物的一系列 - 介绍了一系列的启示。对小胶质细胞中抗炎性活性的筛查表明,E2,E16和E20化合物表现出最有希望的作用,没有明显的细胞毒性。这些化合物有效地降低了LPS诱导的NO产生,并显着降低了促炎性细胞因子IL-1β,IL-6和TNF-α的转录水平。此外,他们下调了与LPS刺激响应炎症相关酶Inos和Cox-2的转录和蛋白质水平。分析了这些衍生物在小胶质细胞中的抗炎性机制,细胞内ROS水平和NRF2-HO-1信号传导途径的激活。结果表明,2H-1,4-苯唑3(4H) - 一种衍生物显着激活了NRF2-HO-1途径,减少了LPS诱导的ROS的产生,并减轻了小胶质细胞的影响。分子对接研究表明,E2,E16和E20的化合物可以与NRF2相关的结合位点相互作用,从而阻止了KEAP1的降解。此外,小鼠的急性毒性测试表明,化合物E16表现出良好的安全性。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。