摘要 - 近年来,在所谓的可认证感知方法的发展中取得了显着进步,这些方法利用半闪烁,凸出放松,以找到对机器人技术中的感知问题的全球最佳选择。然而,其中许多放松依赖于简化促进问题制定的假设,例如各向同性测量噪声分布。在本文中,我们探讨了矩阵加权(各向异性)状态估计问题的半决赛松弛的紧密性,并揭示了其中潜伏在其中的局限性:基质加权因素会导致凸的松弛因失去紧密度。特别是我们表明,矩阵权重的本地化问题的半决赛松弛仅对于低噪声水平可能很紧。为了更好地理解这个问题,我们引入了状态估计的后验不确定性与通过凸面重新获得的证书矩阵之间的理论联系。考虑到这种联系,我们从经验上探讨了导致这种损失的因素,并证明可以使用冗余约束来恢复它。作为本文的第二项技术贡献,我们表明,当考虑矩阵重量时,不能使用标量加权大满贯的状态放松。我们提供了一种替代配方,并表明其SDP松弛并不紧密(即使对于非常低的噪声水平),除非使用特定的冗余约束。我们在模拟和现实世界数据上证明了制剂的紧密度。
解决蛋白质折叠问题。这些方法在自然语言处理字段中使用变压器模型来解释以多个序列比对(MSA)(MSA)的共同进化性化来映射到其晶体样结构的主要序列。替代模型,例如omegafold [8]和Esmfold [9],使用蛋白质语言模型(PLM)来绕过MSA的要求。最近,Alphafold3(AF3)[10]将其预测能力扩展到包括蛋白质,核酸,小分子,离子等的复杂结构。尽管这些方法存在于“序列结构 - 功能”范式中,但已经开发了基于这些方法的广泛方法,可以通过修改AF2的输入或先验信息来从“序列 - 元件功能”的角度运行。它们包括MSA-子采样[11]或还原MMSA-AF2(RMSA-AF2),通过从MSA中随机采样序列来减少输入AF2的信息,这些序列会根据序列相似性[12],Speach_AF [13]与MSA的usa use clustions clusters clusters clusters clusterions clustimation cluse speach_af [13] pertrultiants the MSA,并且更多地基于MSA,并且更多的是群集群体,并且会群众群体群体群体群体/更多。方法[14]。此外,通过利用AF2结构,Diffold [15]方法使用扩散框架来采样异质构象。我们指出了Sala等人的评论文章。[16]有关这些方法和其他方法的详细信息。然而,大多数生物分子功能取决于适用于给定环境变量(例如温度,压力和离子浓度)的精确构象分布。因此,不仅需要获得任何分布,而且需要获得玻璃体加权分配的构象的分配,以准确地构象对环境条件。这是通过多种方式完成的,包括通过直接开发基于AI的采样器或使用AI来增强增强的MD。这确保系统探讨了按照热力学原理在给定温度和压力下在给定温度和压力下的正确相对概率和波动的构象。这些玻尔兹曼的重量为变构网络作品和下游生物分子功能提供了见解[17],还减少了通过对接和其他应用程序发现药物发现的亚稳态构象的搜索空间[18](图1C)。在这次微型审查中,我们将讨论在过去几年中为生物分子构象分布的传统甲基动物的影响,并进一步概述了我们认为社区可以采取的鲍尔茨曼(Boltzmann)加权蛋白质及其复合物的结构合成的关键步骤。
弥散加权磁共振成像 (DWI) 常用于诊断急性脑梗塞,因为它能够显示因受损细胞水扩散变化而观察到的细胞毒性水肿。DWI 功能取决于水的微分扩散速率或布朗运动。因此,它常用于神经肿瘤学领域,用于脑肿瘤患者的诊断和随访。弥散受限由表观扩散系数 (ADC) 值较低表示,这与细胞毒性水肿、细胞过多或致密内容物(出血和蛋白质)、细胞数量和细胞核/细胞质比率增加以及大分子积累有关。细胞外空间减少会限制水分子的转移,从而导致恶性肿块中的扩散受限。根据先前的研究,细胞含量高的肿瘤表现出更多的扩散限制和较低的 ADC 值 (11,33)。从 DWI 获得的 ADC 值特别与肿瘤细胞、治疗反应、神经胶质瘤等级和生存期相关(4,21,33)。
本研究探讨了印度海军的新海上战略和使命、不断发展的能力以及在印度政治领导层和外交部的支持下开展的积极外交如何预示着印度海军在印度所称的“印度太平洋”地区和美国国防官员所称的“印度亚太”地区将更具合作性和积极性。印度海军的重点将放在印度洋的近邻,并受到其自称的“当务之急”的强烈推动(例如海上边界、能源贸易、保护海外印度人和印度西部的主要地理利益区)。但一个值得注意的新兴特征是印度扩大了在东亚和太平洋地区的海上影响力和参与度。东海和南海海洋问题的突出性、印度加入促进海洋合作的机制、与地区国家的双边关系改善以及美印关系的改善,为印度进一步与包括美国在内的地区和域外伙伴开展东部海洋活动创造了机会。
摘要—目的:基于深度学习技术的脑电信号识别需要充足数据的支持,然而在特定受试者的运动想象任务中通常会出现训练数据稀缺的情况,除非能使用多受试者数据来扩充训练数据。遗憾的是,由于不同受试者的数据分布差异很大,仅在多受试者数据上进行训练只能使模型性能得到微小的提高甚至更差。方法:为解决该问题,本文提出了一种新的加权多分支(WMB)结构来处理多受试者数据,其中每个分支负责拟合一对源-目标受试者数据,并使用自适应权重来整合所有分支或选择权重最大的分支来做出最终决策。将提出的 WMB 结构应用于六种著名的深度学习模型 (EEGNet、Shallow ConvNet、Deep ConvNet、ResNet、MSFBCNN 和 EEG_TCNet),并在 EEG 数据集 BCICIV-2a、BCICIV-2b、高伽马数据集 (HGD) 和两个补充数据集上进行了全面的实验。结果:与最先进模型相比的优异结果证明了所提方法在特定受试者运动想象 EEG 分类中的有效性。例如,提出的 WMB_EEGNet 在 BCICIV-2a、BCICIV-2b 和 HGD 上分别实现了 84.14%、90.23% 和 97.81% 的分类准确率。结论:很明显,提出的 WMB 结构能够很好地利用具有较大分布差异的多受试者数据进行特定受试者的 EEG 分类。
摘要 — 扩散加权磁共振成像 (DW-MRI) 可用于表征神经组织的微观结构,例如通过纤维追踪以非侵入性方式描绘脑白质连接。高空间分辨率的磁共振成像 (MRI) 将在以更好的方式可视化此类纤维束方面发挥重要作用。然而,获得这种分辨率的图像是以更长的扫描时间为代价的。由于患者的心理和身体状况,较长的扫描时间可能与运动伪影的增加有关。单图像超分辨率 (SISR) 是一种旨在从单个低分辨率 (LR) 输入图像中获得高分辨率 (HR) 细节的技术,通过深度学习实现,是本研究的重点。与插值技术或稀疏编码算法相比,深度学习从大数据集中提取先验知识并从低分辨率对应物中生成优质的 MRI 图像。在这项研究中,提出了一种基于深度学习的超分辨率技术,并已应用于 DW-MRI。 IXI 数据集中的图像已被用作地面实况,并被人工下采样以模拟低分辨率图像。所提出的方法在统计上比基线有显著的改进,并实现了 0.913±0.045 的 SSIM。索引术语 — 超分辨率、深度学习、DWI、DTI、MRI
摘要:代谢网络可能是最具挑战性和最重要的生物网络之一。他们的研究提供了有关生物学途径的工作方式以及特定生物体对环境或治疗的鲁棒性的见解。在这里,我们提出了一个有针对边缘的顶点重量作为代表代谢网络的新框架的定向超图。这种基于超级图的表示捕获了代谢物和反应之间的高阶相互作用,以及反应和化学计量权重的方向性,从而保留了所有必需信息。在此框架内,我们提出了通信性和搜索信息作为指标,以量化有向超图的鲁棒性和复杂性。我们探讨了网络方向对这些度量的含义,并通过将它们应用于小型大肠杆菌核心模型来说明了一个实践示例。此外,我们比较了30种不同模型的代谢模型的鲁棒性和复杂性,并连接结构和生物学特性。我们的发现表明抗生素耐药性与高结构鲁棒性有关,而复杂性可以区分真核和原核生物。
摘要 - 非形态光子学是一个有前途的研究领域,因为它有可能应对von-Neumann计算体系结构的瓶颈产生的局限性。受到生物大脑的特征和行为的启发,光子神经网络被吹捧为解决需要在低潜伏期和低功耗下运行的复杂问题的解决方案。这种神经网络的基本构建块是低复杂性多重积累操作,为此寻求光学域中的有效功能实现。向这个方向迈出了一个突触受体,该突触受体可以在功能上整合加权和信号检测。通过单片集成的半导体光学放大器和反射性电吸收调制器来完成此光学多重积累操作,该操作将充当无色频率解调器和频率编码信号的检测器。此外,我们表明可以同时处理两个尖峰列车,并以交替的符号处理并将其视为加权总和。通过低位误差比的信号速率低于10 GB/s,提出的突触受体的性能得到了进一步验证。索引项 - 光学信号检测,神经网络硬件,神经形态光子学,突触受体
摘要:亲自识别,重新排列是通过完善检索结果的初始排名来提高整体准确性的关键步骤。先前的研究主要集中在单视图像的特征上,这些特征可能会导致偏见和诸如姿势变化,观点变化和遮挡等问题。使用多视图来介绍一个人可以帮助减少视图偏差。在这项工作中,我们提出了一种有效的重新级别方法,该方法通过使用K-Neartivt加权融合(KWF)方法来汇总邻居的功能来生成多视图特征。具体来说,我们假设从重新识别模型中提取的特征在表示相同的身份时高度相似。因此,我们以无监督的方式选择K相邻功能来生成多视图功能。此外,本研究探讨了特征聚合过程中的重量选择策略,从而使我们能够确定有效的策略。我们的重新排列方法不需要模型进行微调或额外的注释,因此它适用于大规模数据集。我们在重新识别数据集Market1501,MSMT17和遮挡的dukemtmc上评估我们的方法。结果表明,从初始排名结果中重新列出顶级M候选者时,我们的方法会显着提高列表@1并映射。具体而言,与初始结果相比,我们的重新排列方法在具有挑战性的数据集中,等级@1的提高分别为9.8% / 22.0%:MSMT17和闭塞性dukemtmc。此外,我们的方法证明了与其他重新排列方法相比,计算效率的实质性提高。
18 德国明斯特大学放射学诊所 19 澳大利亚墨尔本大学墨尔本医学院精神病学系 20 澳大利亚维多利亚州帕克维尔墨尔本大学弗洛里神经科学和心理健康研究所