摘要:代谢网络可能是最具挑战性和最重要的生物网络之一。他们的研究提供了有关生物学途径的工作方式以及特定生物体对环境或治疗的鲁棒性的见解。在这里,我们提出了一个有针对边缘的顶点重量作为代表代谢网络的新框架的定向超图。这种基于超级图的表示捕获了代谢物和反应之间的高阶相互作用,以及反应和化学计量权重的方向性,从而保留了所有必需信息。在此框架内,我们提出了通信性和搜索信息作为指标,以量化有向超图的鲁棒性和复杂性。我们探讨了网络方向对这些度量的含义,并通过将它们应用于小型大肠杆菌核心模型来说明了一个实践示例。此外,我们比较了30种不同模型的代谢模型的鲁棒性和复杂性,并连接结构和生物学特性。我们的发现表明抗生素耐药性与高结构鲁棒性有关,而复杂性可以区分真核和原核生物。
癫痫发作是最常见的神经系统疾病之一,其特征是大脑中神经元的突然异常排出。使用脑电图记录(EEG)记录的自动癫痫发作会提高治疗质量并减少医疗开销。 本文的目的是设计一个自动癫痫发作检测框架,该框架可以通过发现大脑区域之间的连通性来有效地识别癫痫发作和非癫痫事件。 在这项工作中,提出了一种具有有效脑连接性(EBC)的加权定向方法以进行癫痫发作。 通过分析大脑不同区域之间的相关性来构建加权定向图。 然后,基于图理论的措施用于提取分类的特征。 此外,我们说明了提出的方法实现患者特异性模型和交叉患者模型的癫痫发作检测的能力。 结果表明,所提出的方法在患者特定模型和CHB-MIT数据集中分别达到99.97%和98.29%的精度值。 这些结果表明,所提出的方法实现了有效的分类性能,可用于为自动癫痫发作检测和临床诊断提供帮助。使用脑电图记录(EEG)记录的自动癫痫发作会提高治疗质量并减少医疗开销。本文的目的是设计一个自动癫痫发作检测框架,该框架可以通过发现大脑区域之间的连通性来有效地识别癫痫发作和非癫痫事件。在这项工作中,提出了一种具有有效脑连接性(EBC)的加权定向方法以进行癫痫发作。通过分析大脑不同区域之间的相关性来构建加权定向图。然后,基于图理论的措施用于提取分类的特征。此外,我们说明了提出的方法实现患者特异性模型和交叉患者模型的癫痫发作检测的能力。结果表明,所提出的方法在患者特定模型和CHB-MIT数据集中分别达到99.97%和98.29%的精度值。这些结果表明,所提出的方法实现了有效的分类性能,可用于为自动癫痫发作检测和临床诊断提供帮助。
癫痫发作是最常见的神经系统疾病之一,其特征是大脑神经元突然异常放电。使用脑电图 (EEG) 记录自动检测癫痫发作将提高治疗质量并减少医疗费用。本文的目的是设计一个自动癫痫发作检测框架,通过发现大脑区域之间的连通性来有效识别癫痫发作和非癫痫发作事件。在本文中,提出了一种基于加权有向图的有效大脑连接 (EBC) 方法来检测癫痫发作。通过分析大脑不同区域之间的相关性来构建加权有向图。然后,使用基于图论的度量来提取分类特征。此外,我们说明了所提出的方法实现针对特定患者模型和跨患者模型的癫痫发作检测的能力。结果表明,所提出的方法在 CHB-MIT 数据集中针对特定患者模型和跨患者模型的准确率分别达到 99.97% 和 98.29%。这些结果表明,所提出的方法实现了有效的分类性能,可用于为癫痫发作的自动检测和临床诊断提供帮助。
网络对于分析复杂系统至关重要。然而,网络规模的不断扩大需要采用旨在减小网络规模同时保留关键特征的主干提取技术。在实践中,选择、实施和评估最合适的主干提取方法可能具有挑战性。本文介绍了 netbone,这是一个用于评估加权网络中主干提取技术性能的 Python 包。它的比较框架是 netbone 的突出特点。事实上,该工具采用了最先进的主干提取技术。此外,它提供了一套全面的评估指标,允许用户评估不同的主干技术并根据他们的案例研究选择最佳技术。我们通过美国航空运输网络分析说明了 netbone 的灵活性和有效性。我们使用评估指标比较了不同主干提取技术的性能。我们还展示了用户如何将新的主干提取方法集成到比较框架中。Netbone 作为一个开源工具向公众开放,确保研究人员和从业人员可以使用它。推广标准化评估实践有助于主干提取技术的进步,并促进研究工作的可重复性和可比性。我们预计,netbone 将成为研究人员和从业人员的宝贵资源,使他们能够在选择主干提取技术时做出明智的决策,从而深入了解复杂系统的结构和功能特性。
神经形态处理有望高能效率和快速响应率,使其成为实现自动驾驶资源受限机器人的理想候选者。对于高水平的视觉感知而言,它可能对复杂的神经网络有益。但是,完全神经形态的解决方案还需要解决低级控制任务。值得注意的是,目前仍然具有挑战性,即使是基本的低级控制器,例如比例综合衍生(PID)控制器。具体来说,很难合并整体和衍生部分。为了解决这个问题,我们提出了一个神经形态控制器,该神经形态控制器在学习过程中结合了比例,积分和衍生途径。我们的方法包括整体途径的新型输入阈值适应机制。此输入加权阈值适应(IWTA)引入了每个突触连接的额外重量,用于适应后突触后神经元的阈值。我们通过使用不同时间常数使用神经元来解决衍生术语。我们首先分析了提出的机制的性能和限制,然后通过将其在连接到开源的小型Crazyflie四极管上的微控制器上实现,将其控制在测试中,以取代内部的速率控制器。我们证明了在存在干扰的情况下飞行的生物启发算法的稳定性。当前的工作代表了用神经形态算法控制高度动态系统的实质性一步,从而推进了神经形态处理和机器人技术。此外,整体是任何时间任务的重要组成部分,因此提出的输入加权阈值适应(IWTA)机制可能具有超出控制任务的影响。
我们提出了一种混合量子经典算法来计算二元组合问题的近似解。我们采用浅深度量子电路来实现一个幺正算子和厄米算子,该算子对加权最大割或伊辛汉密尔顿量进行块编码。测量该算子对变分量子态的期望可得出量子系统的变分能量。通过使用归一化梯度下降优化一组角度,该系统被迫向问题汉密尔顿量的基态演化。实验表明,我们的算法在随机全连通图上的表现优于最先进的量子近似优化算法,并通过产生良好的近似解向 D-Wave 量子退火器发起挑战。源代码和数据文件可在 https://github.com/nkuetemeli/UQMaxCutAndIsing 下公开获取。
摘要—目的:基于深度学习技术的脑电信号识别需要充足数据的支持,然而在特定受试者的运动想象任务中通常会出现训练数据稀缺的情况,除非能使用多受试者数据来扩充训练数据。遗憾的是,由于不同受试者的数据分布差异很大,仅在多受试者数据上进行训练只能使模型性能得到微小的提高甚至更差。方法:为解决该问题,本文提出了一种新的加权多分支(WMB)结构来处理多受试者数据,其中每个分支负责拟合一对源-目标受试者数据,并使用自适应权重来整合所有分支或选择权重最大的分支来做出最终决策。将提出的 WMB 结构应用于六种著名的深度学习模型 (EEGNet、Shallow ConvNet、Deep ConvNet、ResNet、MSFBCNN 和 EEG_TCNet),并在 EEG 数据集 BCICIV-2a、BCICIV-2b、高伽马数据集 (HGD) 和两个补充数据集上进行了全面的实验。结果:与最先进模型相比的优异结果证明了所提方法在特定受试者运动想象 EEG 分类中的有效性。例如,提出的 WMB_EEGNet 在 BCICIV-2a、BCICIV-2b 和 HGD 上分别实现了 84.14%、90.23% 和 97.81% 的分类准确率。结论:很明显,提出的 WMB 结构能够很好地利用具有较大分布差异的多受试者数据进行特定受试者的 EEG 分类。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 3 月 2 日发布。;https://doi.org/10.1101/2023.03.01.530710 doi:bioRxiv 预印本
每年,在世界各地的医院中都会获得数百万次脑电磁共振成像(MRI)扫描。这些有可能彻底改变我们对许多神经系统疾病的理解,但是由于它们的各向异性解决方案,它们的形态分析尚未实现。我们提出了一种人工智能技术,即“合成器”,该技术对任何MR对比度进行临床大脑MRI扫描(T1,T2等。),方向(轴向/冠状/矢状),并分辨出来,并将它们变成高分辨率T1扫描,这些T1扫描几乎可以通过所有现有的人类神经影像工具使用。我们介绍了> 10,000张对照和脑肿瘤,中风和阿尔茨海默氏病的对照组和患者的分割,注册和地培训的结果。合成子产生的传奇结果与高分辨率T1扫描所能获得的非常高度相关。Synthsr允许样本量有可能克服前瞻性研究的功率限制,并为健康和患病的人脑提供了新的启示。
摘要:三维卷积神经网络 (3D CNN) 已广泛应用于分析阿尔茨海默病 (AD) 脑图像,以更好地了解疾病进展或预测从认知障碍 (CU) 或轻度认知障碍状态的转变。众所周知,由于医学成像领域的样本量较小,训练 3D-CNN 的计算成本很高,并且有可能过度拟合。在这里,我们提出了一种新颖的 3D-2D 方法,通过使用可学习加权池化 (LWP) 方法将 3D 脑图像转换为 2D 融合图像,以提高训练效率并保持可比的模型性能。通过 3D 到 2D 的转换,所提出的模型可以轻松地通过预先训练的 2D 模型转发融合的 2D 图像,同时在不同的 3D 和 2D 基线上实现更好的性能。在实施过程中,我们选择使用 ResNet34 进行特征提取,因为它的表现优于其他 2D CNN 主干。我们进一步表明,切片的权重与位置有关,模型性能取决于 3D 到 2D 融合视图,冠状视图的结果最佳。与传统的 3D CNN 相比,使用新方法,我们能够减少 75% 的训练时间,并将准确率提高到 0.88,使用公开的阿尔茨海默病神经影像计划数据集对 CU 参与者的 AD 患者的淀粉样蛋白 PET 成像进行分类。这种新颖的 3D-2D 模型可能对未来在临床环境中及时诊断 AD 具有深远的影响。