从各个时期提取特征特征(无重叠,例如一分钟)或使用滑动窗口程序从每个时期包含的原始数据中提取统计描述符、傅立叶系数、小波分解或类似内容,以应用统计模式识别技术典型的佩戴时间验证着眼于每个加速度计轴的各个时期的标准偏差和阈值(例如std < 3mg)。较新的方法还考虑了温度。将记录转换为每分钟的活动记录仪计数,通常只在一个轴上(z 轴指向手腕外)。
本文档中包含的信息取代了本手册其他地方可能出现的所有类似信息。 完全客户满意度 – PCB Piezotronics 保证完全客户满意度。如果您出于任何原因对任何 PCB 产品不完全满意,PCB 将免费维修、更换或交换该产品。您也可以选择退还您的购买价格,以代替维修、更换或交换产品。 服务 – 由于 PCB Piezotronics 提供的传感器和相关仪器的复杂性,不建议用户进行维修或维护,如果尝试这样做,可能会导致工厂保修失效。可以进行日常维护,例如使用不会损害物理结构材料的解决方案和技术清洁电连接器、外壳和安装表面。应注意确保液体不会渗入未密封的设备。此类设备只能用湿布擦拭,切勿浸入水中或将液体倒在上面。维修 – 如果设备损坏或停止运行,应安排将设备送回 PCB Piezotronics 进行维修。不建议用户自行维修,如果尝试维修,可能会使工厂保修失效。校准 – 传感器和相关仪器的日常校准是
表 1.设备摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 表 2.引脚描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 表 3.机械特性 @ Vdd = 2.5 V,T = 25 °C,除非另有说明。。。。。。。。。。9 表 4.电气特性 @ Vdd = 2.5 V,T = 25 °C,除非另有说明。。。。。。。。。。。10 表 5.SPI 从机时序值。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 表 6.I2C 从机时序值。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 表 7.绝对最大额定值。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 表 8.串行接口引脚描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 表 9.串行接口引脚描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 表 10.SAD+读/写模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 表 11.当主机向从机写入一个字节时传输。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 表 12.当主机向从机写入多个字节时传输:。。。。。。。。。。。。。。。。。。。。。。。。。。。19 表 13.当主机从从机接收(读取)一个字节的数据时传输: 。。。。。。。。。。。。。19 表 14.。主设备从从设备接收(读取)多个字节数据时的传输 。.......19 表 15。寄存器地址映射。...........。。。。。。。。。。。。。。。。。。。。。。。。................23 表 16.CTRL_REG1 寄存器 .......。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 表 17.CTRL_REG1 说明 .....................。。。。。。。。。。。。。。。。。。。。。。。。....24 表 18.功率模式和低功耗输出数据速率配置 .......................24 表 19.正常模式输出数据速率配置和低通截止频率 ........25 表 20.CTRL_REG2 寄存器 ..............。。。。。。。。。。。。。。。。。。。。。。。。..............25 表 21.CTRL_REG2 描述 ..........。。。。。。。。。。。。。。。。。。。。。。。。.................25 表 22.高通滤波器模式配置 ......。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...26 表 23.高通滤波器截止频率配置 ...............................26 表 24.CTRL_REG3 寄存器 .........。。。。。。。。。。。。。。。。。。。。。。。。......................26 表 25.CTRL_REG3 描述 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.26 表 26.INT 1 和 INT 2 引脚上的数据信号 ..................。。。。。。。。。。。。。.........27 表 27.CTRL_REG4 寄存器 ............。。。。。。。。。。。。。。。。。。。。。。。。.................27 表 28.CTRL_REG4 描述 .......。。。。。。。。。。。。。。。。。。。。。。。。....................27 表 29.CTRL_REG5 寄存器 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...28 表 30.CTRL_REG5 描述 .........。。。。。。。。。。。。。。。。。。。。。。。。。...... div>.........28 表 31.睡眠唤醒配置 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>............28 表 32.参考寄存器。....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 表 33.参考说明 ....< div> 。。。。。。。。。。。。。。。 < /div>.....。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 表 34.STATUS_REG 寄存器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 表 35.STATUS_REG 描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 表 36.INT1_CFG 寄存器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 表 37.INT1_CFG 描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 表 38.中断 1 源配置 ..........< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 表 39.INT1_SRC 寄存器 ....< div> 。。。。。。。。。。。。。。。 < /div>.....。。。。。。。。。。。。。。。。。。。。。。。。...... div>...31 表 40.INT1_SRC 描述 .。。。。。。。。 < /div>.....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 表 41.INT1_THS 寄存器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 表 42.INT1_THS 描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 表 43.INT1_DURATION 寄存器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 表 44.INT2_DURATION 说明。....................。。。。。。。。。。。。。。。。。。。。。。。。32 表 45.INT2_CFG 寄存器 .....................。。。。。。。。。。。。。。。。。。。。。。。。.........32 表 46.INT2_CFG 描述 ............。。。。。。。。。。。。。。。。。。。。。。。。...............32 表 47.中断模式配置。.......。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 表 48.INT2_SRC 寄存器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33
摘要——本研究描述了三轴加速度计 (TA) 和便携式数据处理单元的开发,用于评估日常身体活动。TA 由三个正交安装的单轴压阻加速度计组成,可用于记录覆盖人体加速度幅度和频率范围的加速度。仪器间和重测实验表明,TA 的偏移量和灵敏度在每个测量方向上相等,并在两个测量日内保持不变。横向灵敏度在每个测量方向上都存在显著差异,但不影响加速度计输出(<主轴灵敏度的 3%)。数据单元能够在线处理加速度计输出,从而可靠地估计八天的身体活动。在实验室标准化活动期间对 13 名男性受试者进行系统初步评估,结果表明加速度计输出与身体活动引起的能量消耗之间存在显著关系,这是身体活动的标准参考值 (r = 0.89)。该系统的缺点是对久坐活动的灵敏度低,并且无法记录静态运动。应在自由生活的受试者中研究该系统对正常日常身体活动和实验室外特定活动的评估有效性。
表 1. 绝对最大额定值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................................................................................................................................39
FREEDSON, P.、D. POBER 和 KF JANZ。儿童加速度计输出校准。《运动医学科学》,第 37 卷,第 11 期(增刊),第 S523-S530 页,2005 年。了解儿童和青少年体育活动行为的决定因素对于设计和实施增加体育活动的干预研究至关重要。使用各种类型的运动检测器评估体育活动行为的客观方法已被推荐作为该人群自我报告的替代方法,因为它们不受自我报告测量所需的儿童回忆相关的许多错误来源的影响。本文回顾了四种最常用于评估儿童体育活动和久坐行为的加速度计的校准。这些加速度计是 ActiGraph、Actical、Actiwatch 和 RT3 三轴研究跟踪器。本文回顾了描述使用直接测量的能量消耗作为标准校准这些设备的回归建模方法的研究。本文介绍了几项研究中对应于不同活动强度的能量消耗或计数范围的点估计值。对于给定的加速度计,定义 3 和 6 MET 边界的计数截点在所审查的研究中存在很大差异,尽管大多数研究在测试方案中包括步行、跑步和自由生活活动。建议使用原始加速度信号的替代数据处理作为一种可能的替代方法,其中实际加速度模式用于表征活动行为。本文介绍了定义儿童和青少年加速度计校准最佳实践的重要考虑因素。关键词:体力活动测量、运动传感器、青少年 T
微机电系统 (MEMS) 技术前景广阔,引起了学术界、实验室、政府和商业领域的极大兴趣。这种兴趣主要集中在使用传统硅处理技术和设备制造的微尺度设备的潜在性能和成本优势上。虽然到 2000 年,微机械设备的市场规模预计将达到每年 101 亿至 142 亿美元,但当前和预测的市场非常细分。这种细分现象也适用于微机械加速度计和陀螺仪市场。高效和 * Sandia 是由 Sandia 公司(洛克希德马丁公司)为美国能源部根据合同 DE-AC04-94AL85000 运营的多程序实验室。^ BRD(通信):电子邮件:brdavie@sandia.gov;电话:(505) 844-5600 MSR(通信):电子邮件:rodgersm@sandia.gov;电话:(505) 844-1784 SM(通信):电子邮件:montags@sandia.gov;电话:(505) 844-6954