腐烂的传感器在加速我们对动物生态学的理解方面一直是关键的,提供了具有高级基本生态学理论和知情保护行动的多种数据(Snape等,2018; Nickel等,2021; Nickel等,2021; Vonbank et al。,2023; West et al。,2024)。起源于主要用于跟踪动物位置和运动的工具,动物损坏的传感器已经演变为涵盖能够监视动物环境,行为和内部状态的广泛设备(Wilmers等,2015)。动物磨损的加速度计 - 衡量运动平面加速变化的传感器 - 已用于估计各种研究系统和问题的能量支出,并推断动物行为(请参阅Halsey等人。(2011); Fehlmann et al.(2017)).通过在开阔海洋中发现大型上层鱼类产卵行为的检测到表征难以捉摸的陆地捕食者的狩猎和能量(Clarke等,2021; Wang等,2015),加速度计在生态学上已成为一个有价值的工具,并在生态学上已经大大扩展了跨越的生态范围,以前跨越了跨越的生态范围,并具有跨越的范围,并具有跨越的范围,并具有跨越的范围。 (Studd et al., 2021).加速度计捕获动物行为的实用性在于它们捕获与特定运动或与不同行为不同的特定运动或姿势相对应的不同波形模式的能力(Brown等,2013)。用于分类动物行为的机器学习模型包括来自古典机器学习分类器的多样性,例如支持向量机(Martiskainen然而,与其他传感器方式(例如GPS或温度传感器)提供的直接测量相反,加速度计数据的相对抽象的性质可以使波形的解释具有挑战性。因此,用加速度计数据识别行为通常需要将原始加速度计数据与已知行为配对,以创建标记的数据集,这些数据集可用于学习感兴趣的不同行为的特定波形模式(Brown等,2013)。由于可以收集的大量加速度计数据以及行为特征之间的微妙区别,手动检测到看不见的加速度计数据中的不同行为可能具有挑战性。为了克服这一问题,机器学习技术越来越被利用,以学习从标记的数据集中采取不同行为的加速度计模式(Chakravarty等,2019; Garde等,2021; Otsuka et al。,2024)。
主要关键词