Loading...
机构名称:
¥ 2.0

在当前的麻醉学实践中,麻醉师推断出无意识状态,而无需直接监测大脑。药物和患者特异性的脑电图(EEG)特定的麻醉引起的潜意识的特征已被鉴定。我们将机器学习方法应用于构建分类模型,以在麻醉引起的无意识期间对无意识状态的实时跟踪。我们使用交叉验证选择和训练最佳性能模型,使用33,159 2S段的脑电图数据记录在7位健康志愿者中,他们收到了丙泊酚越来越多的兴奋剂,同时响应刺激,以直接评估无意识。在相同条件下收集的3个剩下的志愿者(中位志愿者AUCS 0.99-0.99)对13,929 2s EEG段进行测试时,的交叉验证模型表现出色。 模型在对27名手术患者的队列进行测试时显示出强烈的概括,这些手术患者在不同的情况下仅接受单独的临床数据集中收集的丙泊酚,并使用不同的硬件(中位患者AUC 0.95-0.98),并在病例中采取了模型预测,并采取了模型预测。 对17例接受七氟醚(单独或除丙泊酚之外)的患者的表现也很强(AUC中位数为0.88-0.92)。 这些结果表明,即使对具有类似神经机械的不同麻醉剂进行测试,EEG光谱特征也可以预测不同意性。的交叉验证模型表现出色。模型在对27名手术患者的队列进行测试时显示出强烈的概括,这些手术患者在不同的情况下仅接受单独的临床数据集中收集的丙泊酚,并使用不同的硬件(中位患者AUC 0.95-0.98),并在病例中采取了模型预测,并采取了模型预测。对17例接受七氟醚(单独或除丙泊酚之外)的患者的表现也很强(AUC中位数为0.88-0.92)。这些结果表明,即使对具有类似神经机械的不同麻醉剂进行测试,EEG光谱特征也可以预测不同意性。有了高性能的无意识预测,我们可以准确地监测麻醉状态,并且该方法可用于设计输液泵,以对患者的神经活动有明显的反应。

脑电图谱的机器学习在GABA能麻醉期间对无意识进行了分类

脑电图谱的机器学习在GABA能麻醉期间对无意识进行了分类PDF文件第1页

脑电图谱的机器学习在GABA能麻醉期间对无意识进行了分类PDF文件第2页

脑电图谱的机器学习在GABA能麻醉期间对无意识进行了分类PDF文件第3页

脑电图谱的机器学习在GABA能麻醉期间对无意识进行了分类PDF文件第4页

脑电图谱的机器学习在GABA能麻醉期间对无意识进行了分类PDF文件第5页

相关文件推荐