1简介1 1。1问题配方2 1。2研究问题3 2相关工作5 2。1 ICD编码的先前方法5 2。 1。 1传统的机器学习方法5 2。 1。 2深度学习方法6 2。 1。 3个大语言模型(LLMS)6 2。 2利用ICD代码层次结构进行距离计算8 2。 3在模型训练中解决非差异损失功能9 2。 4不确定性10 3方法13 3。 这项工作中使用的1个LLM 13 3。 2数据集16 3。 3数据处理16 3。 3。 1临床笔记处理16 3。 3。 2 ICD- 10代码处理17 3。 3。 3数据拆分17 3。 4 T 5-基本编码的模型17 3。 5使用t 5中的任务前缀进行ICD编码18 3。 6将ICD-10代码层次结构纳入培训过程18 3。 6。 1定义基于距离的损耗函数18 3。 6。 2克服解码模型输出的挑战23 3。 7用于ICD编码的微调T 5 24 3。 8评估指标24 3。 8。 1总距离(TD)24 3。 8。 2 ICD第2章(IIC)25 3。 8。 3无关的ICD块(IIB)25 3。 8。 4无关的ICD第三级(IIT)25 3。 9模型不确定性估计25 3。 10实验设置27 4结果29 4。 1数据分析结果29 4。 2。1 ICD编码的先前方法5 2。1。1传统的机器学习方法5 2。1。2深度学习方法6 2。1。3个大语言模型(LLMS)6 2。2利用ICD代码层次结构进行距离计算8 2。3在模型训练中解决非差异损失功能9 2。4不确定性10 3方法13 3。这项工作中使用的1个LLM 13 3。2数据集16 3。3数据处理16 3。3。1临床笔记处理16 3。3。2 ICD- 10代码处理17 3。3。3数据拆分17 3。4 T 5-基本编码的模型17 3。 5使用t 5中的任务前缀进行ICD编码18 3。 6将ICD-10代码层次结构纳入培训过程18 3。 6。 1定义基于距离的损耗函数18 3。 6。 2克服解码模型输出的挑战23 3。 7用于ICD编码的微调T 5 24 3。 8评估指标24 3。 8。 1总距离(TD)24 3。 8。 2 ICD第2章(IIC)25 3。 8。 3无关的ICD块(IIB)25 3。 8。 4无关的ICD第三级(IIT)25 3。 9模型不确定性估计25 3。 10实验设置27 4结果29 4。 1数据分析结果29 4。 2。4 T 5-基本编码的模型17 3。5使用t 5中的任务前缀进行ICD编码18 3。6将ICD-10代码层次结构纳入培训过程18 3。6。1定义基于距离的损耗函数18 3。6。2克服解码模型输出的挑战23 3。7用于ICD编码的微调T 5 24 3。8评估指标24 3。8。1总距离(TD)24 3。8。2 ICD第2章(IIC)25 3。 8。 3无关的ICD块(IIB)25 3。 8。 4无关的ICD第三级(IIT)25 3。 9模型不确定性估计25 3。 10实验设置27 4结果29 4。 1数据分析结果29 4。 2。2 ICD第2章(IIC)25 3。8。3无关的ICD块(IIB)25 3。8。4无关的ICD第三级(IIT)25 3。9模型不确定性估计25 3。10实验设置27 4结果29 4。1数据分析结果29 4。2。2实验结果30 4。1 LLM和ICD编码的输入长度的比较31 4。2。2比较ICD编码的不同块策略32
主要关键词