✓ 前 500 名参与者的 10662 个数据字段 ✓ 前 200 名参与者的 57245 个数据字段 ✓ 193 种肿瘤的变异调用 ✓ 193 种肿瘤的 2370 个生物样本注释字段 ✓ 受控访问下的公开发布预计于 2023 年第四季度
摘要 卷积神经网络(CNN)在图像处理领域得到了广泛的应用,基于CNN的目标检测模型,如YOLO、SSD等,已被证明是众多应用中最先进的。CNN对计算能力和内存带宽要求极高,通常需要部署到专用的硬件平台上。FPGA在可重构性和性能功耗比方面具有很大优势,是部署CNN的合适选择。本文提出了一种基于ARM+FPGA架构的带AXI总线的可重构CNN加速器。该加速器可以接收ARM发送的配置信号,通过分时方式完成不同CNN层推理时的计算。通过结合卷积和池化操作,减少卷积层和池化层的数据移动次数,减少片外内存访问次数。将浮点数转换为16位动态定点格式,提高了计算性能。我们分别在 Xilinx ZCU102 FPGA 上为 COCO 和 VOC 2007 上的 YOLOv2 和 YOLOv2 Tiny 模型实现了所提出的架构,在 300MHz 时钟频率下峰值性能达到 289GOP。
创始团队由在化学、机器学习和机器人技术领域拥有深厚专业知识的科学家和工程师组成,公司得到了天使投资者的支持,包括 Udo Jung 博士(波士顿咨询集团化学和石化部门创始人和长期领导者)、Chris Gibson 博士(Recursion 首席执行官兼联合创始人)、Lee Cronin 教授(化学 Regius 主席兼 Chemify 首席执行官)和将担任公司董事会主席的 Carlos Haertel 博士(通用电气前高管和 Climeworks 前首席技术官)。在过去两年中,Dunia 在加速电催化剂墨水配方概念验证中验证了其技术,该平台在速度和性能方面均优于人类研究人员。
1 《涉及中华人民共和国的军事和安全发展》(2020 年),国防部国防部长办公室,第 25 页;《涉及中华人民共和国的军事和安全发展》(2021 年),国防部国防部长办公室,第 24-29 页。
在20世纪发达国家的预期寿命提高可以归因于几个因素 - 卫生基础设施和清洁水,粮食安全的提高,基于人群的医疗保健系统,最普遍的童年传染病和使用抗生素的大规模疫苗接种计划。亚历山大·弗莱明(Alexander Fleming)在1928年发现青霉素及其霍华德·弗洛里(Howard Florey)和恩斯特(Ernst)链条的纯化1940年以“抗生素年龄”为例,并奠定了探索潜力的基础,以探索大量的新颖抗菌剂(Hutchings等人(Hutchings等人)(Hutchings等,2019; lima et al。,2020; vila; vila。目前,将药物送入市场大约需要12年的公共用途,并且该过程非常昂贵,“新的抗生素的中位开发成本超过10亿美元,并且在批准后完成该化合物在其市场上的10年内完成批准后的批准后成本约为3.5亿美元。然而,在第一次临床使用青霉素后不久,观察到微生物通过几种不同的机制获得抗生素耐药性(Christaki等,2020; Huemer等,2020; Larsen等,2022)。世界卫生组织(WHO)强调了在细菌,病毒,寄生虫和真菌中应对耐药性的优先事项,这需要全球协调的多部门方法(Tacconelli等,2018)。抗菌抗性无疑受到i)在农业,兽医和医学实践中广泛使用广谱抗生素,ii)自我
热电 (TE) 材料是当今极少数可持续且可行的能源解决方案之一。这种巨大的能量收集前景取决于识别/设计出比现有材料效率更高的材料。然而,由于材料的化学空间非常广阔,到目前为止,只有一小部分材料经过了实验和/或计算扫描。通过在主动学习框架中采用基于压缩感知的符号回归,我们不仅确定了材料成分中具有卓越 TE 性能的趋势,还预测并通过实验合成了几种性能极高的新型 TE 材料。其中,我们发现 Cu 0.45 Ag 0.55 GaTe 2 在 827 K 时具有高达 ~2.8 的实验性能系数,这是该领域的一项突破。所提出的方法证明了物理信息描述符在材料科学中的重要性和巨大潜力,特别是对于通常在良好控制条件下的实验中获得的相对较小的数据集。
电气调节深脑的设备已使神经和精神疾病的管理中的重要突破。此类设备通常是厘米尺度,需要手术插入和有线供电,从而增加了每日活动期间出血,感染和损害的风险。使用较小的远程材料可能导致侵入性神经调节较少。在这里,我们提出了能够无线传输电信号的磁电纳米电极,以响应于外部磁场。这种调节机制不需要对神经组织的遗传修饰,允许动物在刺激过程中自由移动,并使用非共振载体频率。使用这些纳米电极,我们在体内表现出神经元调节的体外和深脑靶标。我们还表明,局部亚乳头调制促进了通过基底神经节电路连接的其他区域的调制,从而导致小鼠行为变化。磁电材料提出了一种多功能平台技术,可用于侵入性较小的深脑神经调节。
溶解的O 2降低对浮游植物生理学的阳性或负面影响取决于光暴露的持续时间。为了揭示潜在的机制,海洋模型硅藻thalassira pseudonana在三个溶解的O 2水平(8.0 mg l -1,环境O 2; 4.0 mg L -1,Low O 2;和1.3 mg L -1,低氧)中进行培养,以比较其生长,蜂窝池组成和黑暗的生长,和物理学和黑暗周期。结果表明,环境O 2下的生长速率为0.60±0.02天-1,是光周期内生长速率的一半,在黑暗时期内增长率为15倍。降低O 2在光周期增加了生长速率,但在黑暗时期降低了它,并在光和黑暗时期都降低了细胞色素含量。在光中,低O 2增加了细胞碳(C)的含量,而缺氧则降低了它,而在黑暗中的增加和降低的程度更大。低O 2对细胞氮(N)含量没有显着影响,但缺氧降低了。低O 2对光合效率没有显着影响,但降低了黑暗呼吸率。在黑暗中,低O 2对细胞C损耗率没有显着影响,但n损耗率降低,导致POC/POC比率增加。此外,缺氧加剧了细胞死亡率和下沉,这表明硅藻衍生的碳埋葬可能会由于未来的海洋脱氧而加速。
摘要。在本文中,我们提出了一种通过将传统 CFD 求解器与我们的 AI 模块集成来加速 CFD(计算流体动力学)模拟的方法。所研究的现象负责化学混合。所考虑的 CFD 模拟属于一组稳态模拟,并使用基于 OpenFOAM 工具箱的 MixIT 工具。所提出的模块被实现为 CNN(卷积神经网络)监督学习算法。我们的方法通过为模拟现象的每个数量创建单独的 AI 子模型来分发数据。然后可以在推理阶段对这些子模型进行流水线处理以减少执行时间,或者逐个调用以减少内存需求。我们根据 CPU 或 GPU 平台的使用情况检查所提出方法的性能。对于具有不同数量条件的测试实验,我们将解决时间缩短了约 10 倍。比较基于直方图比较法的模拟结果显示所有数量的平均准确率约为 92%。
