周围神经系统可以看作是一个庞大的神经元网络,该神经元网络向整个人体发出信号。实际上,如[1]所示,“周围神经系统(PNS)中的所有信息流沿轴突沿轴突传输,称为动作电位”。但是,由于神经损伤,可以预防这种神经信号或动作电位的普通传导。在这种情况下,将信息准确地传递到有机体内的预期目的地或部分。诚然,可以理解,物理疗法对在周围神经系统的受损部分中恢复正确的功能非常有帮助。然而,由于人体在人体内部的成就仍然很难形象化神经活动。模拟神经系统将提供一个平台,以可视化系统的工作原理以及受损的神经如何影响PN。的确,这项研究的目的是模拟一个虚拟网络,该虚拟网络显示了人类周围神经系统的一般拓扑,例如,模拟了人类手臂的神经结构和行为),该网络显示了如何将信号路由到其正确的目的地并展示其系统中的模拟生物神经损害。
图 1:皮层内基于听觉拼写器的通信 – A) 在患者家中设置。信号由植入运动皮层的微电极阵列记录,并使用定制的 BCI 软件进行处理。B) 听觉神经反馈和拼写器的示意图。检测到动作电位并用于估计神经放电率。选择一个或多个通道,它们的放电率标准化和混合(参见在线方法)。字母组和字母等选项由合成语音呈现,然后是一段响应期,在此期间,要求患者调节标准化和混合的放电率,以获得正响应,降低以获得负响应。标准化速率线性映射到响应期间播放的短音的频率,以向患者提供反馈。患者必须将放电率保持在某个阈值以上(以下)通常 500 毫秒,以引起“是”(“否”)响应。在神经反馈模块中训练神经放电率的控制,其中指示患者匹配目标音调的频率。
多通道记录来自大脑软生物组织的电信号是电生理学中一项重要的技术。然而,传统的刚性针电极的穿透会对组织造成物理应力并引起组织损伤,从而无法进行稳定的记录。本文报道的方法涉及使用带有微电极的柔性“线状”装置,该装置能够借助类似于缝纫机制的引导微针精确穿透和放置在脑组织内。提出了一种使用可溶解材料的设备固定方案,以实现无应力的针“捕获”和“释放”。将该设备放置在活体小鼠的初级视觉皮层 (V1) 中,并记录局部场电位 (LFP) 和动作电位 (尖峰)。在植入设备后的两周内,小鼠的体重没有明显下降。因此,我们得出结论,所提出的缝纫线设备增强了神经信号的记录,同时最大限度地减少了设备引起的压力。
神经递质多巴胺是从称为静脉曲张的离散轴突结构中释放出来的。它的释放在行为中至关重要,并且与普遍的神经精神疾病有关。现有的多巴胺检测方法无法检测和区分离散的多巴胺释放事件与多个静脉曲张。这阻止了对离散静脉曲张种群中多巴胺释放的理解。使用近红外荧光(980 nm)多巴胺纳米传感器“油漆”(andromeda),我们表明动作电位引起的诱发的多巴胺释放是高度异质的,并且还需要分子启动。使用仙女座,我们可以在具有高时间分辨率(15张图像/s)的单个成像场中同时以多巴胺能静脉曲张的形式可视化多巴胺释放。我们发现,多巴胺释放的“热点”是高度异质性的,仅在所有静脉曲张的17%处被检测到。在缺乏Munc13蛋白的神经元中,在电刺激过程中废除了多巴胺释放的神经元,这表明多巴胺释放需要囊泡启动。总而言之,仙女座揭示了多巴胺释放的时空组织。
人工神经元是一种数学函数,被认为是生物神经元的模型,即神经网络。人工神经元是人工神经网络的基本单元。人工神经元接收一个或多个输入(代表神经树突处的兴奋性突触后电位和抑制性突触后电位)并将它们相加以产生输出(或激活,代表沿其轴突传输的神经元动作电位)。通常,每个输入都单独加权,总和通过称为激活函数或传递函数的非线性函数传递。传递函数通常具有 S 形,但它们也可以采用其他非线性函数、分段线性函数或阶跃函数的形式。它们也通常是单调递增、连续、可微和有界的。阈值函数启发了构建称为阈值逻辑的逻辑门;适用于构建类似于大脑处理的逻辑电路。例如,近年来,诸如忆阻器之类的新设备已被广泛用于开发这种逻辑。
植入式生物电子设备需要通过组织传输数据,但这种介质的离子电导率和不均匀性使传统的通信方法变得复杂。在这里,我们介绍了离子通信 (IC),它使用离子有效传播兆赫范围的信号。我们证明 IC 通过在可极化介质内产生和感应电势能来工作。IC 被调整为在一系列生物相关的组织深度上传输。传播半径受到控制以实现多线并行通信,并且不会干扰其他生物电子设备的同时使用。我们创建了一个完全可植入的基于 IC 的神经接口设备,该设备在数周内从自由移动的啮齿动物那里获取并以非侵入性的方式传输神经生理数据,并且其稳定性足以从单个神经元中分离动作电位。IC 是一种基于生物学的数据通信,可在完整组织之间建立长期、高保真的相互作用。
抽象的尖峰耦合耦合表征了在两个不同尺度上观察到的神经生理活性之间的关系:一方面,神经元产生的动作电位,另一方面是介绍性的“轨道”信号,反映了subthreshold活性。这提供了有关特定单元在网络动力学中的作用的见解。但是,基于多元数据评估神经回路的5个整体组织需要超越成对方法,并且在很大程度上没有解决。我们开发了广义相位锁定分析(GPLA),作为单变量尖峰耦合的多通道扩展。GPLA估计了场活性和神经合奏的主要时空分布以及它们之间的耦合强度。我们证明了在各种生物物理神经元网络模型和犹他州阵列记录中,这10种方法的统计益处和可解释性。特别是,我们表明GPLA与神经场建模相结合,有助于解开复发相互作用对在多渠道记录中观察到的时空动力学的贡献。
左侧:这侧表示刺激(例如,铅笔的压力)在皮肤表面的影响。它表明,在压力点直接刺激了直接的感觉神经元(传入神经元),而相邻的神经元则在较小程度上刺激相邻神经元(刺激较小)。这侧的图显示了整个皮肤区域的动作电位频率的分布,随着距离右侧的距离增加,压力点的最高频率并逐渐减小:这侧说明了横向抑制的机理。强烈刺激感觉神经元时,它们会释放通过抑制性神经元抑制相邻神经元的神经信号。这种抑制作用减少了相邻神经元的活性,从而阻止了它们向中枢神经系统发送强信号。这侧的图表显示,由于这种抑制作用,皮肤上的感觉区域变得更加清晰,并且在与压力点相邻的区域的动作势频率降低。
图 1 | a. 实验装置由放置在前臂肌肉中的 320 个表面 EMG 电极组成。运动指令由受试者前方的显示器上显示的虚拟手视频引导。b. 一些示例电极显示受试者尝试抓握任务(手指屈伸,0.5Hz)时的原始 HDsEMG 信号。c. 基于运动单元动作电位均方根值的空间映射示例。d. 在两指捏合任务的 10 秒内识别的运动单元激发(颜色编码)的光栅图。e. 使用因式分解分析为同一任务提取的神经模块。f. 具有两个神经模块的各个运动单元的 Pearson 相关值 (r)。g. 在所有任务和受试者中识别的运动单元 (MU) 数量(每个点代表一个受试者)。h. 两个神经模块(M1 - 蓝色和 M2 - 红色)解释方差的百分比,在所有受试者中平均。
检查显示左上肢的低位,近端(MRC 3/5)和远端无力(MRC 2/5)以及右前背侧和绑架者Pollicis brevis(4/5)的轻度弱点(4/5)。反射降低,感觉完好无损。在下肢中,髋屈曲(4/5)双侧存在轻度弱点。颈椎和大脑的MRI正常。神经传导研究(NCS)揭示了运动神经疾病的特征,具有完整的感觉研究,其中位神经和尺神经的复合肌肉动作电位显着降低。肌电图(EMG)显示左下角,二头肌臂,第一侧骨间和外展波利西斯的左下角发生了主动的去神经变化。最初,考虑了神经肌瘤的诊断。但是,她的症状进展了,五个星期后,她遇到了吞咽困难。重复的NC和EMG暗示着运动神经疾病,涉及四个区域 - 鳞茎,宫颈,胸腔和腰部区域。与疾病的临床表现一起