图2:介电函数的假想部分ε2(ω),作为散装(a)si和(b)lif的光子能量(eV)的函数。在这里,实验光谱显示为蓝色杂交,红线代表了使用GGA函数代替手稿中使用的LDA函数的KSP计算结果。可以看出,与实验保留的极好的一致性,实际上,与使用LDA功能进行的相同计算相比,理论吸收仅可忽略不计(与图。纸的2)
摘要简介/目标。草药一直是整个人类历史上至关重要的可再生医学来源,因为大部分全球人口仍然取决于它们的健康益处。草药补充剂的日益普及引起了人们对与其他药物原位的总体安全性和潜在互动的明显关注。目的是刺激对草药 - 药物相互作用的未来研究,以及了解这种相互作用的后果的相互作用机制。方法。该审查是通过使用Google Scholar,Science Direct,Mendeley,Scopus和PubMed的数据库进行系统搜索进行的。用英语编写的出版物被使用。据报道,许多草药产品与已知的东正教药物相互作用。抑制诱导机制触发链反应,通常导致药物生物利用度,毒性或不良副作用降低。据报道,一些草药植物构成结合了CYP2C9,CYP2C19,CYP2E1和CYP3A1,以及许多其他暂时或不可逆地结合了CYP3A1。结论。这项研究是通过重申常规和定期向医生和患者提供固有危险(例如降低疗效和与Herb-Drug相互作用(HDI)相关的毒性增加)的不完善性结束的结论。草药使用者应定期建议适当使用草药补充剂,以避免在共同给药期间或联合疗法中发生不良药物相互作用的风险。在HDI中可以观察到协同作用和拮抗作用,因此需要进一步的临床前和临床经验研究来强调HDI的机制和程度。关键字:草药 - 药物相互作用,酶,药代动力学互动,传统医学,细胞色素P450通讯作者:Mary O. Ologe电子邮件:FunMiologe@yahoo.com
C-KIT - , PU.1+, CSF1R+, F4/80 hi , CD45 + , Cx3CR1 hi 38,42-44 。相反,另一部分“晚期”EMP 为 97
量子状态的相干叠加是量子信息处理的重要资源,它将量子动力学和信息与经典对应物区分开。在本文中,我们确定了在宽泛的环境中传达量子信息的相干要求,包括受监视的Quanth Quanth动力学和量子误差校正代码。我们通过考虑由两个对手Alice和Eve之间玩过的量子信息游戏生成的混合电路来确定这些要求,Alice和Eve之间通过对固定数量的量子台进行应用和调查来竞争。Alice应用单位人员试图维持量子通道的容量,而EVE则应用测量方法来摧毁它。通过限制每个对立面可用的连贯性生成或破坏操作,我们确定了爱丽丝的连贯要求。当爱丽丝扮演旨在模仿通用监测量子动态的随机策略时,我们会发现纠缠和量子通道容量中的相干相变。然后,我们得出一个定理,给出了爱丽丝在任何成功策略中要求的最小相干性,并通过证明连贯性在任何stabelizer量子误差校正代码中的代码距离上设置了上限。这样的界限提供了对量子通信和误差校正的相干资源要求的严格量化。
本文探讨了变压器模型在每个节点(如神经生物学和生物物理网络)中具有复杂非线性动力学的网络中学习Granger因果关系的潜力。我们的研究主要集中于基于模拟神经动力学的概念验证研究,为此,通过基本的连通性矩阵已知地面真实性因果关系。对于经过训练的预测神经元种群动态的变压器模型,我们表明,交叉注意模块有效地捕获了神经元之间的因果关系,其精度相等或优于最流行的Granger因果关系分析方法。我们承认,现实世界的神经生物学数据将带来进一步的挑战,包括动态连通性和未观察到的可变性,但这项研究为神经科学中因果代表学习的变压器模型的实用性提供了令人鼓舞的初步瞥见。
理论物理部,彼得斯堡核物理研究所,圣彼得堡,俄罗斯b高级研究所,慕尼黑技术大学,德国加尔奇,德国c普林斯顿c普林斯顿生命科学研究所,新泽西州森林生态和森林生态管理瓦格宁根大学和研究集团,荷兰瓦格宁根,环境科学与自然资源管理学院,挪威生命科学大学,Ås,挪威F地球系统中心,美国国家空间研究所,乔西·乔希(Joshi)和坎普斯(Campos)预测和气候研究,美国国家太空研究所,乔希尔和坎波斯,巴西H学院,f ur theoretische Physik,技术大学,德累斯顿大学,德累斯顿,德国,我的I Embenty,Ingenier,Ingenier学院
B. 激发导致零级激子态,每个点由两个空穴态(h1 和 h2,蓝色条)和一个电子态(e,红色条)组成。可以构建 8 个激子态,4 个局部激子,即 h1eA(顶行),其中空穴-电子对位于同一点上(激发用直线表示)和 4 个电荷转移,即 h1A-eB,(CT 态,底行),其中空穴和电子位于不同的点上(激发用曲线表示)。C. 异质结的本征激子态
charpiat大学。巴黎 - 萨克莱,伊特里亚,实验室。数字科学的跨学科(LISN);大学。巴黎 - 萨克莱,CNR,实验室。
在这项工作中,我们提出了一种通过分析从连续光测量获得的平均干扰条纹来表征纳米/微膜共振器的方法。随着膜的振动,干扰条纹显示出模糊和对比度的降低,我们从中建立了振动幅度与模糊区域之间的直接关系。此方法提供了一种快速,直接的方法来表征膜振动并确定分散关系。此外,它可以同时提取多个振动模式,提供可用于重建动态振动轮廓的模式数字和相位差异。其效率和广泛的频率范围使其特别适合高频应用和快速数据收集。