Shiri Levy、1,2 Logeshwaran Somasundaram、1,2 Infencia Xavier Raj、1,2 Diego Ic-Mex、1,2 Ashish Phal、1,3 Sven Schmidt、1,2,17 Weng I. Ng、1,2 Daniel Mar、1,4 Justin Decarreau、2,5,6 Nicholas Moss、1,7,8 Ammar Alghadeer、1,9,10 Henrik Honkanen、1,2,18 Jay Sarthy、11,12 Nicholas Vitanza、13,14 R. David Hawkins、1,7,8 Julie Mathieu、1,15 Yuliang Wang、1,16 David Baker、2,5,6 Karol Bomsztyk、1,4 和 Hannele Ruohola-Baker 1,2,3,8,9,19, * 1 研究所华盛顿大学医学院干细胞与再生医学,美国华盛顿州西雅图 98109 2 华盛顿大学医学院生物化学系,美国华盛顿州西雅图 98195 3 华盛顿大学医学院生物工程系,美国华盛顿州西雅图 98105 4 华盛顿大学医学系、过敏和传染病科,美国华盛顿州西雅图 98195 5 华盛顿大学蛋白质设计研究所,美国华盛顿州西雅图 98195 6 华盛顿大学霍华德休斯医学研究所,美国华盛顿州西雅图 98195 7 华盛顿大学医学院医学系医学遗传学分部,美国华盛顿州西雅图 98195 8 华盛顿大学医学院基因组科学系,美国华盛顿州西雅图 98195 9 华盛顿大学牙科学院口腔健康科学系, WA 98109,美国 10 伊玛目阿卜杜勒拉赫曼·本·费萨尔大学牙科学院生物医学牙科科学系,沙特阿拉伯达曼 31441 11 弗雷德·哈钦森癌症研究中心基础科学部,华盛顿州西雅图 98109,美国 12 西雅图儿童医院癌症和血液病中心,华盛顿州西雅图 98105,美国 13 西雅图儿童研究所本·汤恩儿童癌症研究中心,华盛顿州西雅图,美国 14 华盛顿大学儿科系儿科血液学/肿瘤学分部,华盛顿州西雅图,美国 15 华盛顿大学比较医学系,华盛顿州西雅图 98195,美国 16 华盛顿大学保罗·G·艾伦计算机科学与工程学院,华盛顿州西雅图 98195,美国 17 现地址:尤利乌斯·马克西米利安斯·维尔茨堡大学,维尔茨堡 97070,德国 18 现地址:卡罗琳斯卡医学院学习、信息学、管理和伦理学系,斯德哥尔摩 17177,瑞典 19 主要联系人 *通信地址:hannele@u.washington.edu https://doi.org/10.1016/j.celrep.2022.110457
根据WHO肿瘤分类实用方法组织(非WHO官方组织)的诊断标准,缺乏GBM组织学特征的IDH野生型弥漫性星形细胞瘤或间变性星形细胞瘤,可能同时具备以下分子遗传学特征之一:EGFR扩增;7号染色体获得/10号染色体缺失;端粒酶逆转录酶(TERT)启动子突变,均应诊断为弥漫性星形细胞胶质瘤,IDH野生型,具备GBM分子病理学特征,WHO IV。随着对GBM生物学特性的认识不断加深,针对特定信号通路和微环境的药物研究也越来越多,如靶向药物、抗血管药物和免疫治疗等,但这些药物单独使用对GBM的改善作用并不明显。
本文所包含的信息被认为是可靠的,但没有任何形式的陈述,担保或保证就其准确性,适用于特定申请或要获得的结果。该信息基于实验室的小型设备,不一定表示最终产品性能。由于在处理这些材料时商业上使用的方法,条件和设备的变化,因此没有对产品适用于披露的申请的适用性。全尺度测试和最终产品性能是用户的责任。Lubrizol Advanced Materials,Inc。不承担任何责任,并且客户承担除Lubrizol Advanced Materade,Inc。以外的任何材料的任何风险和责任。卖方不对明示或暗示的担保,包括但不限于对特定目的的适销性和适合性的隐含保证。本文中没有任何内容应作为许可,建议,也不应作为未经专利所有人许可的任何专利发明的诱因。不包括安全使用所需的产品安全信息。在处理,读取产品和安全数据表并包含标签以进行安全使用,物理和健康危害信息。安全数据表可从您的Lubrizol代表或分销商那里获得。
TBR225是越南北部最受欢迎的商业大米品种之一。然而,这种品种非常容易受到细菌叶枯白(BLB)的影响,这是一种由黄元莫纳斯·奥利扎·PV引起的疾病。oryzae(XOO),可能导致重要的产量损失。OSSWEET14属于编码糖转运蛋白的甜基因家族。与其他进化枝III成员一起,其表现为一种易感性(S)基因,亚洲XOO转录激活剂样效应子(Tales)对于疾病绝对必要。在这项研究中,我们试图在TBR225精英品种中引入BLB耐药性。首先,在TBR225感染后显示了两种越南XOO菌株在上调OSSWEET14。如果这种诱导与疾病易感性相关,则使用CRISPR/CAS9编辑系统获得了OSS-WEET14启动子的九个TBR225突变型线,其中九个具有突变,PTHXO3或TALF TALES TARES DNA TALES DNA目标序列。T 0和T 1个个体的基因分型分析表明,突变是稳定遗传的。三个无基因T2编辑线的所检查的农艺性状与野生型TBR225的较大不同。重要的是,具有最大的纯合6 bp缺失的T 2系之一,显示出OSSWEET14表达的降低,以及对越南XOO菌株的敏感性降低,并且对另一种菌株的完全抗性。我们的发现表明,CRISPR/CAS9编辑赋予了对越南商业精英大米品种的BLB耐药性。
摘要 目的 癌症的表观基因组改变与免疫微环境相互作用,决定肿瘤的发展和治疗反应。我们旨在研究胃癌中表观遗传替代启动子使用对肿瘤免疫微环境的调节,并将我们的研究结果扩展到其他胃肠道肿瘤。设计 使用一种新颖的生物信息学算法 (proActiv) 量化替代启动子负荷 (APB),以从短读 RNA 测序和分为 APB 高、APB int 和 APB 低的样本推断启动子活性。进行单细胞 RNA 测序以分析肿瘤内免疫微环境。人源化小鼠癌症体内模型用于探索肿瘤动力学、替代启动子使用和人体免疫系统之间的动态时间相互作用。评估了接受免疫疗法治疗的多组胃肠道肿瘤,以确定 APB 与治疗结果之间的相关性。结果 APB high 胃癌肿瘤表达的 T 细胞溶细胞活性水平降低,并表现出免疫耗竭的特征。单细胞 RNA 测序分析证实了 APB high 肿瘤中不同的免疫群体和较低的 T 细胞比例。使用具有活跃人类免疫系统的“人源化小鼠”进行的功能性体内研究揭示了 APB 与肿瘤生长之间的明显时间关系,其中 APB high 肿瘤几乎没有人类 T 细胞浸润。对接受免疫疗法治疗的胃肠道癌患者的分析证实了 APB high 肿瘤对免疫检查点抑制的耐药性。与 APB low 相比,APB high 胃癌的无进展生存期明显较差(中位数 55 天 vs 121 天,HR 0.40,95% CI 0.18 至 0.93,p=0.032)。结论这些发现表明替代启动子的使用与肿瘤微环境之间存在关联,从而导致免疫逃避和免疫疗法耐药性。
从睾丸释放的精子经历成熟过程并通过附睾运输获得使卵子受精的能力。附睾分为四个区域,每个区域都有独特的形态、基因谱、腔内微环境和截然不同的功能。为了研究附睾起始节(IS)中相关基因的功能,通过 CRISPR/Cas9 技术建立了一种新的 IS 特异性小鼠模型——Lcn9-Cre 敲入(KI)小鼠系。TAG 终止密码子被 2A-NLS-Cre 盒替换,导致 Lcn9 和 Cre 重组酶共表达。从出生后第 17 天首次观察到 IS 特异性 Cre 表达。使用 Rosa26 tdTomato 报告小鼠,Cre 介导的 DNA 重组仅在主细胞中检测到。使用 Lcn9-Cre 小鼠与携带 Tsc1 floxed 等位基因 (Tsc1 flox/+) 的小鼠品系杂交,进一步证实了附睾 IS 特异性 Cre 体内活性。Cre 表达不影响正常发育或雄性生育力。与之前报道的任何附睾特异性 Cre 小鼠不同,新型 Lcn9-Cre 小鼠品系可用于引入整个 IS 特异性条件基因编辑以进行基因功能研究。
摘要:GT2-LIKE1(GTL1)基因是气孔发育的负调控基因,它调节植物气孔的数量。CRISPR/Cas9 系统已用于改造OsGTL1启动子。本研究旨在筛选出带有OsGTL1启动子改造的无Cas9水稻。设计Cas9特异引物对8个T 3 水稻品系的所有分蘖进行Cas9筛选。只有一个T 3 品系在所有分蘖中都是无Cas9的,而8个品系中有3个品系的所有分蘖中都有Cas9。从5个独立品系中可获得无Cas9分蘖的种子。改造植株与野生型(WT)的叶绿度、每株分蘖数和每株叶子数无显著差异。然而,8个改造品系中有7个品系的叶片显著小于WT。一些无Cas9植物中OsGTL1启动子的核苷酸序列揭示了OsGTL1启动子的修饰,包括在目标区域内的小的缺失、插入和大的缺失。
我们之前报道了一种针对死体营养真菌植物病原菌核病菌的 CRISPR-Cas9 基因组编辑系统。该系统(TrpC-sgRNA 系统)基于 RNA 聚合酶 II(RNA Pol II)启动子(TrpC)在体内驱动 sgRNA 转录,成功创建了基因插入突变体。然而,相对低效率的靶向基因编辑阻碍了该方法在核病菌功能基因组研究中的应用。为了进一步优化 CRISPR-Cas9 系统,建立并评估了无质粒的 Cas9 蛋白/sgRNA 核糖核蛋白(RNP)介导的系统(RNP 系统)和基于质粒的 RNA 聚合酶 III 启动子(U6)驱动的 sgRNA 转录系统(U6-sgRNA 系统)。本研究针对之前鉴定的草酰乙酸乙酰水解酶 (Ssoah1) 基因座和一个编码聚酮化合物合酶 12 (Sspks12) 的新基因座创建了功能丧失突变体。RNP 系统与我们之前报道的 TrpC-sgRNA 系统类似,可以在 Ssoah1 基因座上以类似的效率产生突变。然而,这两个系统都未能在 Sspks12 基因座上成功产生突变。U6-sgRNA 系统在这两个基因座上都表现出明显更高的基因突变效率。该技术为靶向基因突变提供了一种简单有效的策略,从而将加快对这种具有重要经济价值的植物病原体的致病性和发展的研究步伐。
摘要染色质动力学由重塑酶介导,在基因调控中起着至关重要的作用,正如在典型模型酿酒酵母 PHO5 启动子中建立的那样。然而,有效的核小体动力学,即启动子核小体配置的轨迹,仍然难以捉摸。在这里,我们通过整合已发表的单分子数据推断出这种动力学,这些数据捕获了从受抑制到完全活跃的 PHO5 启动子状态的多核小体配置,以及其他现有的组蛋白周转和新的染色质可及性数据。我们设计并系统地研究了一类新的“受调节的开关滑动”模型,模拟全局和局部核小体(解)组装和滑动。68,145 个模型中只有 7 个与所有数据吻合良好。所有七个模型都涉及滑动和 N-2 核小体的已知核心作用,但通过调节一个组装而不是解体过程来调节启动子状态转换。这与 PHO5 启动子先前观察结果的常见解释一致,但提出了挑战,并表明染色质通过结合竞争而开放。
Adrian P. Rybak、Elsie Zahr Akrawi、Conrad Rinaldi、Scott J. Haskett、Ling Lin、Jeffrey Marshall、Alexander Liquori、Luis Barrera、Jenny Olins、S. Haihua Chu、Jeremy Decker、Minerva Sanchez、Yeh-Chuin Poh、Matt Humes、Michael S. Packer、Nicole M. Gaudelli、Sarah Smith、Adam Hartigan 和 Giuseppe Ciaramella。