进行准确的亚季节预测仍然是科学界的挑战(White等人2022)。中期时间范围位于中期每日天气预报和季节性预测之间(Vitart等人,2017年)。为了改善季节前的前提,已经做出了巨大的努力来理解不同的过程,相互作用和可预测性的来源(Domeisen等人。,2022; Robertson&Vitart,2019年; White等。,2022)。中季可预测性与大气,海洋和土地过程有关(Robertson&Vitart,2019年)。亚季节范围最重要的预性能力来源如下:Madden-Julian振荡(Lau&Waliser,2011; Vitart等人,2017年),由于其对热带和外界全球天气的影响(Cassou,2008; Deflorio等人,2019年);土壤水分(Koster等人,2010年),因为这会影响较低的大气温度和局部预言(Domeisen等人,2022; Wei&Dirmeyer,2019年);雪覆盖(Lin&Wu,2011年),尤其是极地和中纬度地区(Penny等人,2019年);海洋条件(Woolnough等人,2007年),显示出在某些地区增强降水和温度预测的能力(Subramanian等人,2019年);以及对降水和温度的影响滞后的strato-everhere(Butler等人,2019年)。,2020年;纽曼等人。,2003年; Rashid等。,2011年; Vitart,2014年)。,2022; Mariotti等。改善亚季节预测还与模型物理的改善有关,通过纳入了地球系统的辅助过程和许多组成部分,例如海洋和海冰,以及在与前面提到的可预测性不同来源之间相互作用相关的初始条件下的不确定条件(Merryfield等。下午预测变得更加准确(Robertson&Vitart,2019年)。NWP的预测在过去几十年中有所改善(Magnusson&Källén,2013年)。NWP模型已从概率的方法转变为概率方法。的确,集合(概率)预测通过为预测变量产生一组概率来帮助捕捉大气混乱(Palmer,2000)。因此,一个概率的预测通过更大的结合预测提供了最有可能的情况和与之相关的不确定性,从而可以更自信地验证亚季节预测。由于上述所有努力,亚季节合奏预测已经展示了其潜在的,以提供有价值的预测和早期对重大气候和天气事件的警报(Domeisen等人,2018年; Robertson&Vitart,2019年)。这些
基于模型的增强学习方法提供了一种有希望的方法来通过促进动态模型中的政策探索来提高数据效率。但是,由于自举预测,在动力学模型中准确预测的顺序步骤仍然是一个挑战,该预测将下一个状态归因于当前状态的预测。这会导致模型推出期间积累的错误。在本文中,我们提出了ny-step d ynamics m odel(adm),以通过将引导预测减少为直接预测来减轻复合误差。ADM允许将可变长度计划用作预测未来状态的输入,而无需频繁地引导。我们设计了两种算法,即ADMPO-ON和ADMPO-OFF,它们分别适用于在线和离线模型的框架中。在在线设置中,与以前的最新方法相比,ADMPO-ON显示出提高的样品效率。在离线设置中,与最近最新的离线方法相比,ADMPO不仅表现出优异的性能,而且还可以更好地使用单个ADM来更好地了解模型不确定性。该代码可在https://github.com/lamda-rl/admpo上找到。
摘要 - 基于Terramogealics的轨道车辆(TRV)的动态模型被广泛用于动态分析中。但是,由于其高复杂性和计算成本,这些模型与基于模型的控制器设计不相容。本研究提出了一种新型且简化的基于TRAMEGRAINIC的动态模型,可用于基于优化的实时运动控制器设计。到此为止,我们使用轨道剪切应力的平均项近似轨道的相互作用,以使模型在计算上有效且可线化。通过在轮式车辆场中引入滑动比和滑动角的概念,最终将基于Terramogearics的动态模型简化为紧凑而实用的单轨动态模型,从而降低了对精确滑移比的需求。单轨模型使我们能够通过分别考虑侧面和纵向动力学来设计有效的运动控制方案。最后,在各种道路条件下使用实际TRV对提出的动态模型进行了验证和验证。此外,在模拟中比较了不同模型的性能,以证明所提出的模型在TRV路径遵循任务中的表现优于现有模型。
图 3 (A) 根据方程 (11),建模的时间延迟(以秒为单位)与流向距离 x 的关系,其中积分上限为 x,不同的颜色代表不同的偏航角。 (B) 建模的两个涡轮机之间的时间延迟(以秒为单位)与第一个涡轮机的偏航的关系。 对于该测试,涡轮机直径为 100 m,涡轮机轮毂高度也是 100 m,自由流速度为 U ∞ = 7:77 m/s,并通过设定摩擦速度 u ∗ = 0:45 m/s 来确定,然后使用方程 U ∞ =ðu∗lnðzh=z0ÞÞ=0:4 来找到轮毂高度的自由流速度。局部推力系数为 C0T = 4 = 3,尾流膨胀系数由公式确定:kw = u∗ = U∞ = 0:0579
摘要:闪存干旱正在迅速发展中季气候极端事件,这些事件突然降低了土壤水分,这是由于蒸发需求增加和/或持续的降水所驱动的。在连续美国的每个气候区域(conus)中,我们评估了每周根区域土壤水分(RZSM)的预测技能,蒸发需求(et o)和相关的泛烟(FD)索引(FD)索引(FD)索引(FD)索引,源自两个动态模型[GODDARD EARKENT SYSTEM MODEL SYSTEM V2P1(GEOS-VP1)foref and Geos-V2P1(Geos-V2p1(Geos-V2p1)(Geos-V2p1(Geos-V2p1))在2000年至2019年之间针对三个参考数据集之间的亚季节实验(SUBX)项目中:现代时代的研究和应用版本2版(MERRA-2),北美土地数据同化系统,第2阶段(NLDAS-2)和GEFSV12重新分析。ET O及其在第1周的强迫变量具有中度至高度的异常相关系数(ACC)技能(; 0.70 - 0.95)(;除了下降短波辐射以外),到第3-4周,所有强制变量(ACC,0.5)的预性能较低。RZSM(0 - 100 cm)在高平原,西,西部,中西部和南方区域的领先第1周(; 0.7 - 0.85 ACC)中表现出高技能。当针对GEFSV12重新分析时,对MERRA-2和NLDAS-2和ACC的技能较低时,与MERRA-2和ACC的技能相比,第3-4周至0.5的技能仍然较低。gefsv12分析尚未针对原位观察结果进行评估,并且与NLDAS-2相比,RZSM隔离差异很大,我们的分析识别GEFSV12重新质量预测极限,这可以最大程度地实现ACC; RZSM第3和第4周之间的RZSM预测为0.6。对主要FD事件的分析表明,GEFSV12的重新记录不一致地捕获了有助于FD发作的大气和RZSM异常的正确位置,这表明需要改善动态模型的同化和初始化程序以提高亚季节性FD可预测性。
机器学习(ML)模型越来越多地用于各种应用程序,从电子商务的推荐系统到医疗保健的诊断预测。在本文中,我们提出了一个新颖的动态框架,用于思考ML模型在表现性的人类ML协作系统中的部署。在我们的框架中,ML建议的引入更改了人类决策的数据生成过程,这只是代理地面真理,然后将其用于培训模型的未来版本。我们表明,这种动态过程原则上可以收敛到不同的稳定点,即ML模型和人+ML系统具有相同的性能。相对于实际地面真理,这些稳定点中的一些是最佳的。我们对1,408名参与者进行了经验用户研究,以展示此过程。在研究中,人类在机器学习预测的帮助下解决了背包问题的实例。这是一个理想的环境,因为我们可以看到ML模型如何学会模仿人类的决策以及该学习过程如何收敛到稳定点。我们发现,对于许多ML性能,人类可以改善ML预测,以动态达到最大背包值的92%的平衡性能。我们还发现,如果人类合理地遵循ML建议,平衡性能可能会更高。最后,我们测试货币激励措施是否可以提高人类决策的质量,但我们找不到任何积极的影响。我们的结果对在人类决策可能偏离无可争议的基础真理的情况下部署ML模型具有实际意义。
本书的重要部分集中在生存约束和竞争上。第一章讨论了生存约束如何影响主体的优化行为。本章介绍了将生存水平纳入主体决策过程的模型,展示了这些约束如何导致行为和经济分配的结构性变化。模拟用于探索生存约束如何影响经济不平等,支持这些模型的理论潜力和普遍性。后者将竞争市场原则与经济不平等联系起来。它提出了三个强调竞争不同方面的模型:创新和垄断租金、企业资产的不均衡持有以及资源竞争。这些模型展示了竞争对不平等的矛盾影响,突出了市场内部的趋同和发散趋势。
摘要在许多对照和机器人应用程序中都考虑了神经网络(NN)作为黑框函数近似器。但是,在不确定性存在下验证整体系统安全的困难阻碍了NN模块在安全至关重要的系统中的部署。在本文中,我们利用NNS作为未知染色体系统轨迹跟踪的预测模型。我们在存在固有的不确定性和其他系统模块的不确定性的情况下考虑控制器设计。在这种情况下,我们制定了受约束的传播跟踪问题,并表明可以使用混合智能线性程序(MILP)对其进行求解。在机器人导航和通过模拟避免障碍物中,基于MILP的方法在经验上得到了证明。演示视频可在https://xiaolisean.github.io/publication/2023-11-01-L4DC2024获得。关键字:神经网络,系统级安全,不确定性,轨迹跟踪
耐药性是癌症和传染病治疗的一大临床障碍。慢性粒细胞白血病 (CML) 是一种用 Abl1 抑制剂治疗的血癌,通常被视为靶向治疗和耐药性的模型。大约四分之一的患者对一线治疗产生耐药性。耐药性的最常见原因是 Abl1 酶突变。不同的突变型 Abl1 酶对不同的 Abl1 抑制剂表现出耐药性,而导致对各种突变和抑制剂组合产生耐药性的机制尚不完全清楚,因此选择 Abl1 抑制剂进行治疗是一项艰巨的任务。我们开发了一个基于催化、抑制和药代动力学信息的模型,并将其应用于研究三种 Abl1 抑制剂对 Abl1 酶突变体的影响。从这个模型中,我们表明,产物形成率的相对下降(本研究中定义为“抑制降低能力”)比检查突变体的产物形成率或倍数 IC 50 值的大小更能指示耐药性。我们还研究了指导治疗选择的当前想法和实践,并提出了选择可以提高疗效从而对患者结果产生积极影响的治疗方法的新参数。
北大西洋喷气流强烈影响西北欧洲的天气,并在确定北大西洋大气循环指数(如北大西洋振荡(NAO),东大西洋(EA)模式)和斯堪的纳维亚(SCA)模式的强度和迹象中发挥了重要作用; the anomalous weather pat- terns of a particular season can be described by the inter- play of these modes of variability (Hall & Hanna, 2018 ).最近的极端季节的特征是不同的喷气流配置,喷气强度和位置与西北欧洲各地经验丰富的极端天气条件(例如,在温度和降水量)之间有着密切的联系(Hall&Hanna,2018年)。极端的季节性天气在避免风险方面具有重要的社会经济影响,其成本对保险业(例如,2013/14年冬季英国的15亿英镑(Davies,2014年))对农业,粮食安全,能源供应,公共健康/公共卫生/福祉和恶劣天气计划的影响。直到最近,北大西洋大气变异性很大程度上是由于不可预测的波动(Stephenson等,2000)。然而,动态季节性预测系统已被用来开发熟练的季节性预测,从未来几个月开始为英国冬季天气(Scaife等,2014)。这些喷气流变异性的驱动因素可以互相反对或加强,并且有迹象表明它们之间的相互作用(Hall等,2019)。喷射流变异性的驱动因素显示出季节性变化和喷气流变异性的独特驱动因素在不同的海子中起作用。Many fac- tors (drivers) appear to influence the NAO and jet-stream changes, and these potential drivers can be broadly grouped into cryosphere effects from variations in sea-ice extent and snow cover, oceanic effects from North Atlan- tic sea-surface temperatures (SST), tropical influences such as the El-Niño Southern Oscillation (ENSO), and stratospheric effects due to stratospheric circulation vari- ability, solar variability, volcanic eruptions and the Quasi-Biennial Oscillation (QBO) (Hall et al., 2015 ).除了这些可识别的驱动因素外,由于混乱的内部动力学过程,北大西洋喷气机的一部分的特征是内部未强制性的可变性驱动的(Kushnir等,2006; Lorenz,1963)。现在已经达成共识,即在气候模型中可以再现了一些观察到的驱动因素,但对最近确定的北大西洋地区驱动器的驱动因素的理解提高了,这对于在英国季节性气候预测中取得进展至关重要(Hall等人,2015年,2015年)。The focus of government-funded research is on dynami- cal forecast systems; however, such forecasts are not always