摘要 — 基于轨迹的运营 (TBO) 将需要新的程序和系统来实现空中交通运营的适当自动化。自动化运营的程序和系统密切相关,因此通常需要以组合方式对它们进行建模。我们的团队目前正在采用最新的面向代理的方法来获取有关 TBO 场景的概念模型。概念模型定义了空中交通实体的角色及其相互作用,并详细描述了实体的架构和动态行为。在本文中,我们提出了一种基于方法分析和设计 TBO 场景的多代理系统的驾驶舱功能架构。所提出的设计具有映射到可执行模型以对 TBO 概念进行分析模拟的优势,其模块化架构允许逐步集成具有特定功能的其他底层模型。
孤立的量子力学系统的哈密顿量决定了其动力学和身体行为。这项研究研究了学习和利用系统的哈密顿量及其对数据分析技术的变异热状态估计的可能性。为此,我们采用了基于量子的哈密顿模型的方法来模拟大型强子撞机数据的生成建模,并证明了此类数据等混合状态的代表性。在进一步的一步中,我们使用学到的哈密顿量检测进行异常检测,表明不同的样本类型可以形成一旦被视为量子多体系统的不同动态行为。我们利用这些特征来量化样本类型之间的差异。我们的发现表明,可以在机器学习应用程序中使用专为现场理论计算设计的方法来在数据分析技术中采用理论方法。
摘要使用不同平台和数字零售环境中的接触点增加流量的需求不能过分强调。通常在转换优化中通常使用的一些常规状态无法捕获客户在与互联网商店交往时所做的复杂和动态路径。为了在转换漏斗中捕获客户的这种动态行为,本文介绍了一种基于神经网络的新方法。此外,通过使用人工神经网络(ANN)进行机器学习过程,该模型对客户活动进行了实时预测,并为零售商揭示了适当的关键时刻,以影响客户的决策过程以优化客户体验。这些发现表明,神经网络模型的应用提高了客户行为表示的准确性,以提供提高销售生产率的最佳转换策略。
使用扫描探针显微镜 (SPM) 中的自动化实验探索介电薄膜中的电子传导途径。在这里,我们使用大视场扫描来确定局部导电点的位置,并开发 SPM 工作流程以自动化方式探测它们在更高空间分辨率下的动态行为,这些行为是时间、电压和扫描过程的函数。使用这种方法,我们观察到 20 纳米厚的铁电 Hf 0.54 Zr 0.48 O 2 薄膜中导电点的变化行为,其中导电点在连续扫描过程中消失并重新出现。扫描过程中还会出现新的导电点。自动化工作流程是通用的,可以集成到各种显微镜技术中,包括 SPM、电子显微镜、光学显微镜和化学成像。
摘要 - 这项工作是解决量子仪器的数据驱动建模问题并启用模型可以解释的。首先,提出了一种数据驱动的物理迭代(DPI)建模方法来解决具有基于现象学速率方程描述的量子系统的动态行为的复杂物理系统的建模问题。第二,提出的DPI建模方法结合了快速采样技术,该技术被泰勒平均值定理证明是可行的,以解决非自治系统的建模问题。第三,最小二乘标准和大量法则证明了所提出的方法的融合。最后,将DPI建模方法部署在光学泵送磁力计(OPM)和自旋交换宽松量表(SERFCM)中,在完成量子仪器建模的同时,估算了系统的物理参数。数值模拟和实际实验支持理论结果。
我们引入了一个基于保真度的度量 D QC ( t ),以量化图中经典游动与量子游动的动态差异。我们提供了这种量子-经典动态距离的通用、图独立的解析表达式,表明在短时间内 D QC ( t ) 与游动者的相干性成正比,即一个真正的量子特征,而在长时间内它仅取决于图的大小。在中间时间,D QC ( t ) 确实通过其代数连通性依赖于图的拓扑。我们的结果表明,经典和量子游动的动态行为的差异完全是由于短时间内量子特征的出现。在长时间极限下,量子性和动态生成器的不同性质(例如经典游动的开放系统性质和量子游动的幺正性质)的贡献是相等的。
摘要:高空长航时 (HALE) 飞机由极轻的结构、大翼展和大纵横比组成。这些特性的组合导致飞机系统具有独特的动态行为,其特点是结构和刚体特征模态的强烈相互作用。这些特性对此类飞机的飞行控制算法的稳健性和容错性提出了特定要求。控制系统必须能够让飞机安全地沿着定义的轨道飞行,即使在发生故障的情况下也是如此。由于这些飞机的尺寸较大,它们通常会过度驱动,具有多个冗余控制面。本文利用这种冗余来设计容错控制系统,以确保在故障情况下实现最佳控制性能。该策略基于故障检测和隔离 (FDI) 算法来检测故障的控制面。此故障信息用于在多模型控制方法中切换到备用控制律。FDI 滤波器是使用基于零空间的设计范例设计的,而备用控制器是应用结构化 H ∞ 控制设计技术合成的。
和稳健性、功率和能量、速度。隔离反相器:不同的反相器实现、MOSFET 作为开关、CMOS 反相器、CMOS 反相器的静态和动态行为、性能指标、设计视角:反相器链分析和缩放影响。组合电路:涉及静态 CMOS 设计、比率逻辑设计、传输晶体管设计和动态逻辑设计的设计指南和权衡。顺序电路设计:静态时序分析 (STA),双稳态电路:静态和动态锁存器和寄存器、流水线和非双稳态顺序电路。基于阵列的逻辑设计:现场可编程门阵列 (FPGA)。CMOS 存储器设计:存储器层次结构和组织、外围电路、静态随机存取存储器 (SRAM) 设计、动态 RAM (DRAM) 设计。向上移动层次结构:系统级设计、数据路径和寄存器传输操作。硬件描述语言 (HDL) 简介。寄存器传输级 (RTL) 到 GDSII 流程(行业专家讲座)。
媒介传播的感染因其广泛影响以及预防,控制和治疗工作所需的大量资源,对全球卫生系统和经济体造成了重大负担。在这项工作中,我们为矢量传播感染的传输动力学制定了数学模型,并通过Atangana-Baleanu衍生物的疫苗接种作用。该模型的解决方案是正面的,并且对于状态变量的正初始值而言。我们介绍了分析模型分析的基本概念和理论。使用下一代矩阵方法,我们确定由R 0表示的阈值参数。分析了系统在无病平衡处的局部渐近稳定性。为了确定所提出模型的解决方案的存在,我们采用了定点理论。开发了一种数值方案,以在不同的输入参数下可视化系统的动态行为。数值模拟是为了说明这些参数如何影响系统的动力学。结果突出了影响媒介传播疾病的传播和控制的关键因素,从而提供了对预防和缓解策略的见解。