在许多网络物理系统中,我们遇到了对地理分布和远程物理过程的远程状态估计的问题。本文研究了传感器传输的调度,以估计多个遥控,动态过程的状态。来自不同传感器的信息必须通过无线网络传输到中央门户,以进行监视,其中通常比需要监视的过程更少可用的无线通道。要在网关上有效估算,需要适当地安排传感器,即在每次即时需要确定哪些传感器访问网络且不能确定哪些传感器。为了解决这个调度问题,我们制定了关联的马尔可夫决策过程(MDP)。然后使用深Q-Network解决此MDP,这是一种最近的深层增强学习算法,它立即可扩展且无模型。我们将调度算法与流行的日程安排算法进行比较,例如循环蛋白和降低的等待时间等。对于许多示例场景,我们的算法显示出明显优于这些算法。©2019 Elsevier Ltd.保留所有权利。
神经影像学在新生儿的评估、治疗和预后判断中起着核心作用。近年来,对发育中大脑的探索一直是科研人员和临床医生研究的一大重点,尤其是磁共振成像(MRI)非侵入性神经影像学方法在展示新生儿和婴儿大脑与行为变化之间的联系方面发挥着重要作用(1,2)。MRI不仅间接反映了分子和细胞水平上观察到的复杂动态过程,而且还提供了有关大脑形态、结构连接、灰质和白质微结构特性以及大脑功能结构的信息(3-5)。通过阅读专业文献,可以利用文献计量学了解神经影像学专业或研究领域的前沿动态和发展趋势,从而帮助科研人员预测未来的研究趋势(6-11)。因此,本研究试图利用文献计量学方法对近十年来新生儿MRI脑神经影像学的研究状况进行统计分析,并评估该领域的研究热点和现状。
神经可塑性表现为大脑改变和适应的能力。大脑作为神经系统的一部分,与周围环境融为一体,通过改变其功能实现治愈。文献记载,神经元的结构可以在人的一生中更新。因此,神经元的变化和治愈会持续一生。个人一生中会遇到许多积极或消极的情况。在这些过程中,个人应对、适应和提供灵活性的能力被称为心理韧性。此外,定期体育锻炼、冥想和学习等因素有助于保持身心健康,同时增强大脑可塑性以支持心理韧性。神经可塑性和心理韧性都是动态过程。个人在尝试适应或应对所面临的挑战时与有机体合作。随着大脑形成新的神经连接来应对和治愈情况,心理韧性也会发展出适应和有效的应对技能。每个人都是独一无二的,这些相互作用因人而异。需要进一步研究来清楚地阐明神经可塑性和心理弹性之间的影响。
对于大多数组织而言,适应环境变化和不确定性的动态过程(即在管理内部相互依赖性的同时与环境保持有效协调)极其复杂,涉及组织多个层面的无数决策和行为。但调整过程的复杂性是可以理解的:通过寻找组织行为的模式,可以描述甚至预测组织适应的过程。本文提出了一个理论框架,管理者和管理学学生可以使用该框架将组织作为一个综合的动态整体进行分析,该模型考虑了战略、结构和流程之间的相互关系。(有关理论框架和研究的完整讨论,请参阅 (15))。具体而言,该框架有两个主要要素:(a)适应过程的一般模型,该模型指定组织需要做出的主要决策,以保持与环境的有效协调;(b)组织类型学,该类型学描绘了特定行业或其他群体内组织使用的不同适应行为模式。但正如一些理论家指出的那样,组织在适应行为的选择上仅限于那些
数十年来,光学近场显微镜促进了对纳米级光子激发的开创性研究。近年来,Terahertz场的近场显微镜已成为涉及语音和电子现象,丰富时空动力学和高度非线性过程的实验的重要工具。建立在这个基础上,这种观点阐明了Terahertz近场显微镜提供的变革机会,以探测超快相变的探测,有助于应对以前无法访问的凝聚态物理学的挑战。激光驱动的相位转变在许多系统中都伴随着具有时空特征的Terahertz脉冲,该脉冲受相变的复杂物理学控制的。使用Terahertz近场微副本技术对这些发射的脉冲的表征可以支持对超快相变动力学的研究。这种方法可以例如,允许量子材料中超快拓扑转换的观察者,展示其阐明相位变化的动态过程的能力。
横断面研究将白质组织特性的差异与阅读技能联系起来。但是,过去的研究报告了结果,有时是矛盾的结果。一些研究表明,白质证券是对阅读技能的个人水平特征,而另一些研究则表明阅读技能和白质是个人的教育经验的函数。在本研究中,我们检验了两个假设:a)白质的扩散特性反映了稳定的大脑特征,这些特性与阅读能力的稳定个体差异或b)白质是一个动态系统,与随着时间的流逝有关。为了回答这些问题,我们检查了五年的纵向数据集中的白质与阅读之间的关系,以及一系列大规模的,单观,横断面数据集(n = 14,249个参与者)。我们发现,阅读技能的提高与白质的纵向变化相对应。但是,在横截面数据集中,我们没有发现以下假设:白质中的个体差异可以预测阅读技能。这些发现突出了白质和学习中动态过程之间的联系。
神经退行性疾病可以被识别为一类神经疾病,在细胞内病理学过程中共享相似性。神经变性的最典型标志,特异性蛋白的积累,伴随着其他细胞内过程,导致亚细胞结构功能障碍。在帕金森氏病,α-突触核蛋白(αs)的积累和高级聚集体的形成中,最终被认为是Lewy体的,被认为是主要的标志(Braak等人2003)。 帕金森氏病(PD)是全球第二普遍的神经退行性疾病(Polito等人 2016)。 在PD病理学期间发生了多种平行和/或先前的变化。 鉴于有关该主题的数据量,线粒体功能障碍主要是通过呼吸链破坏并因此增加了活性氧(ROS)的产生,仍被认为在细胞内发病机理中起着不可或缺的作用(Perfeito等人(Perfeito等) 2012,Park等。 2018)。 线粒体网络通过平衡的融合和裂变过程积极维持,通过线粒体来协调线粒体降解(Park等人 ) 2018)。 线粒体膜动力学受分子因子范围适当调节。 除其他外,αs主要由神经元细胞表达,并且似乎与线粒体动态过程密切相关。 αs的过表达对线粒体生理具有毒性作用。 更高2003)。帕金森氏病(PD)是全球第二普遍的神经退行性疾病(Polito等人2016)。在PD病理学期间发生了多种平行和/或先前的变化。鉴于有关该主题的数据量,线粒体功能障碍主要是通过呼吸链破坏并因此增加了活性氧(ROS)的产生,仍被认为在细胞内发病机理中起着不可或缺的作用(Perfeito等人(Perfeito等)2012,Park等。 2018)。 线粒体网络通过平衡的融合和裂变过程积极维持,通过线粒体来协调线粒体降解(Park等人2012,Park等。2018)。线粒体网络通过平衡的融合和裂变过程积极维持,通过线粒体来协调线粒体降解(Park等人2018)。线粒体膜动力学受分子因子范围适当调节。除其他外,αs主要由神经元细胞表达,并且似乎与线粒体动态过程密切相关。αs的过表达对线粒体生理具有毒性作用。 更高αs的过表达对线粒体生理具有毒性作用。更高
产品描述 PERS-42 职业信息页面 421B 部分上发布的预计部门主管 (DH) 职位名单旨在提高详细说明的透明度。该产品是通过将 DH 预计换届日期 (PRD) 与预期的潜艇军官高级课程 (SOAC) 召开时间对齐而构建的。需要额外培训的职位(即战略武器军官、战略导航/作战军官和攻击武器系统武器军官)在 SOAC 毕业和预计换届日期之间将有 2 到 6 个月的延迟。该产品旨在预测未来 6-24 个月内分配给 SOAC 班级的职位。PRD 的例行和每日更新不会立即发布到此产品。鼓励各个指挥部在军官室规划会议 (WRPC) 之间使用此产品。最后,请理解详细说明是一个动态过程。虽然军官应该使用此工具作为他们为 SOAC 做准备时可能可用的示例,但职位通常会滑动一两个班级。请联系 LCDR Aaron M. Smith,邮箱:aaron.m.smith24.mil@us.navy.mil
摘要 列车作为一种高效的交通运输方式,其安全性受到广泛关注。在列车车辆结构设计中,需要对旅客疏散时间进行评估。建立仿真模型是实现此目标最快、最方便、最实用的方法。但很少有学者关注旅客列车疏散仿真模型的可靠性。本文提出了一种基于动态时间扭曲和多维缩放的新验证方法。所提方法验证了仿真模型的动态过程,提供了统计结果,可用于列车疏散场景等小样本场景。案例研究的结果表明,所提方法是一种有效且量化的动态过程中仿真模型验证方法。因此,本文基于仿真实验结果描述了列车结构尺寸对疏散的影响。结构尺寸因素包括门宽度、通道宽度和座位间距。实验结果表明,较宽的通道和合理的座位间距可以促进适当的疏散。此外,正常的列车门宽度对疏散没有影响。关键词:仿真,旅客列车疏散,结构尺寸,验证
课程的第一部分细致地探索了个人与环境之间错综复杂的相互作用,深入探讨了社区随着时间的推移影响人际关系和社会关系并受其影响的动态过程。该课程结构严谨,将理论与实践融为一体,确保学生获得平衡而全面的学习体验。每节课都从深入探索社区心理学的基础理论概念开始,为学生提供对这一迷人领域的深刻见解。这一理论部分不仅仅是准备工作,也是建立实践理解的基础。在同一节课的理论探索之后,课程动态过渡到实际应用。这种转变不是连续的,而是共生的,在同一教学期间将理论与实践融合在一起。学生积极参与动手活动,直接应用他们刚刚获得的理论知识。这种方法允许立即实施概念,使用与现实世界社区工作相关的基本工具。通过将理论学习与实践练习相结合,该课程不仅巩固了学生的理解,还为他们提供了可立即应用的实用、有价值的技能。